These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38484579)

  • 1. The convergence approach may be critical to improving early situational awareness in hostile radioactive environments.
    Silva VWL; Profeta WHS; Curzio RC; Santos A; Brum T; Andrade ER
    J Environ Radioact; 2024 Apr; 274():107413. PubMed ID: 38484579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urban critical infrastructure disruption after a radiological dispersive device event.
    Andrade ER; Reis ALQ; Alves DF; Alves IS; Andrade EVSL; Stenders RM; Federico CA; Silva AX
    J Environ Radioact; 2020 Oct; 222():106358. PubMed ID: 32745885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose assessment for reentry or reoccupancy and recovery of urban areas contaminated by a radiological dispersal device: the need for a consensus approach.
    Sullivan T; Musolino SV; DeFranco J
    Health Phys; 2008 May; 94(5):411-7. PubMed ID: 18403962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential urban threat after a radiological fire event.
    Silva RW; Stenders RM; Reis ALQ; Amorim JCC; Andrade ER
    Appl Radiat Isot; 2021 Oct; 176():109905. PubMed ID: 34418730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vertical radiation dose profile and decision-making in a simulated urban event.
    Alves IS; Castro MSC; Stenders RM; Silva RW; Brum T; Silva AX; Andrade ER
    J Environ Radioact; 2019 Nov; 208-209():106034. PubMed ID: 31454588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of the EMRAS urban working group hypothetical scenario using the RESRAD-RDD methodology.
    Kamboj S; Cheng JJ; Yu C; Domotor S; Wallo A
    J Environ Radioact; 2009 Dec; 100(12):1012-8. PubMed ID: 19403213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequence assessment of hypothetical urban radiological dispersal device incident in Korea.
    Oboo M; Nytak VB; Bulelwa N; Kim J
    J Environ Radioact; 2024 Feb; 272():107332. PubMed ID: 37984219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiological Risk Assessment by Convergence Methodology Model in RDD Scenarios.
    Rother FC; Rebello WF; Healy MJ; Silva MM; Cabral PA; Vital HC; Andrade ER
    Risk Anal; 2016 Nov; 36(11):2039-2046. PubMed ID: 26895431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid cancer risk dependence on the Pasquill-Gifford atmospheric stability classes in a radiological event.
    Bulhosa VM; Funcke RPN; Brum T; Sanchez JS; Lima ZR; Vital HC; Prah M; Andrade ER
    Radiat Environ Biophys; 2020 May; 59(2):337-342. PubMed ID: 32221699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A MCREXS modelling approach for the simulation of a radiological dispersal device.
    Ivan L; Hummel D; Lebel L
    J Environ Radioact; 2018 Dec; 192():551-564. PubMed ID: 30142583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protecting people against radiation exposure in the event of a radiological attack. A report of The International Commission on Radiological Protection.
    Valentin J;
    Ann ICRP; 2005; 35(1):1-110, iii-iv. PubMed ID: 16164984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation Modeling and Finite Cloud Effects for Atmospheric Dispersion Calculations in Near-field Applications: Modeling of the Full Scale RDD Experiments with Operational Models in Canada, Part II.
    Lebel L; Bourgouin P; Chouhan S; Ek N; Korolevych V; Malo A; Bensimon D; Erhardt L
    Health Phys; 2016 May; 110(5):518-25. PubMed ID: 27023038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risks and management of radiation exposure.
    Yamamoto LG
    Pediatr Emerg Care; 2013 Sep; 29(9):1016-26; quiz 1027-29. PubMed ID: 24201986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of realistic RDD scenarios and their radiological consequence analyses.
    Shin H; Kim J
    Appl Radiat Isot; 2009; 67(7-8):1516-20. PubMed ID: 19318261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear accident consequence assessment in Hong Kong using JRODOS.
    Leung WH; Ma WM; Chan PKY
    J Environ Radioact; 2018 Mar; 183():27-36. PubMed ID: 29278800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Sensitivity of Atmospheric Dispersion Calculations in Near-field Applications: Modeling of the Full Scale RDD Experiments with Operational Models in Canada, Part I.
    Lebel L; Bourgouin P; Chouhan S; Ek N; Korolevych V; Malo A; Bensimon D; Erhardt L
    Health Phys; 2016 May; 110(5):499-517. PubMed ID: 27023037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation on the long-term variation of radioactive cesium concentration in the North Pacific due to the Fukushima disaster.
    Kawamura H; Kobayashi T; Furuno A; Usui N; Kamachi M
    J Environ Radioact; 2014 Oct; 136():64-75. PubMed ID: 24907706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrospective dosimetry related to chronic environmental exposure.
    Degteva MO; Kozheurov VP; Tolstykh EI
    Radiat Prot Dosimetry; 1998; 79(1-4):155-60. PubMed ID: 11543360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the effective dose to a population from fallout after a nuclear power plant accident-A scenario-based study with mitigating actions.
    Isaksson M; Tondel M; Wålinder R; Rääf C
    PLoS One; 2019; 14(4):e0215081. PubMed ID: 30964917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of intakes of 131I, 137Cs and 134Cs after the Chernobyl accident.
    Hölgye Z; Malátová I
    Radiat Prot Dosimetry; 2012 Jul; 150(4):504-7. PubMed ID: 22090416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.