These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 38484595)
1. Production of hydrogen-rich fuel gas from waste plastics using continuous plasma pyrolysis reactor. Bhatt KP; Patel S; Upadhyay DS; Patel RN J Environ Manage; 2024 Apr; 356():120446. PubMed ID: 38484595 [TBL] [Abstract][Full Text] [Related]
2. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Singh RK; Ruj B; Sadhukhan AK; Gupta P J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634 [TBL] [Abstract][Full Text] [Related]
3. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil. Kanattukara BV; Singh G; Sarkar P; Chopra A; Singh D; Mondal S; Kapur GS; Ramakumar SSV Environ Sci Pollut Res Int; 2023 May; 30(24):64994-65010. PubMed ID: 37074603 [TBL] [Abstract][Full Text] [Related]
4. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs. Faisal F; Rasul MG; Jahirul MI; Schaller D Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020 [TBL] [Abstract][Full Text] [Related]
5. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils. Breyer S; Mekhitarian L; Rimez B; Haut B Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835 [TBL] [Abstract][Full Text] [Related]
6. Pyrolysis of polyolefins for increasing the yield of monomers' recovery. Donaj PJ; Kaminsky W; Buzeto F; Yang W Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704 [TBL] [Abstract][Full Text] [Related]
7. Study on thermal co-pyrolysis of jatropha deoiled cake and polyolefins. Rotliwala YC; Parikh PA Waste Manag Res; 2011 Dec; 29(12):1251-61. PubMed ID: 21628346 [TBL] [Abstract][Full Text] [Related]
8. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Das P; Tiwari P Waste Manag; 2018 Sep; 79():615-624. PubMed ID: 30343794 [TBL] [Abstract][Full Text] [Related]
9. Thermal pyrolysis of waste versus virgin polyolefin feedstocks: The role of pressure, temperature and waste composition. Abbas-Abadi MS; Kusenberg M; Zayoud A; Roosen M; Vermeire F; Madanikashani S; Kuzmanović M; Parvizi B; Kresovic U; De Meester S; Van Geem KM Waste Manag; 2023 Jun; 165():108-118. PubMed ID: 37119685 [TBL] [Abstract][Full Text] [Related]
10. Microwave pyrolysis of polypropylene, and high-density polyethylene, and catalytic gasification of waste coffee pods to hydrogen-rich gas. de Sousa Felix M; Hagare D; Tahmasebi A; Sathasivan A; Arora M Waste Manag; 2024 Oct; 187():306-316. PubMed ID: 39089146 [TBL] [Abstract][Full Text] [Related]
11. Conversion of hazardous plastic wastes into useful chemical products. Siddiqui MN J Hazard Mater; 2009 Aug; 167(1-3):728-35. PubMed ID: 19201536 [TBL] [Abstract][Full Text] [Related]
12. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor. Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760 [TBL] [Abstract][Full Text] [Related]
13. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037 [TBL] [Abstract][Full Text] [Related]
14. Recent Trends in the Pyrolysis of Non-Degradable Waste Plastics. Gebre SH; Sendeku MG; Bahri M ChemistryOpen; 2021 Dec; 10(12):1202-1226. PubMed ID: 34873881 [TBL] [Abstract][Full Text] [Related]
15. Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil. Subhashini ; Mondal T J Environ Manage; 2023 Oct; 344():118680. PubMed ID: 37531671 [TBL] [Abstract][Full Text] [Related]
16. Production of combustible fuels and carbon nanotubes from plastic wastes using an in-situ catalytic microwave pyrolysis process. Irfan M; Saleem R; Shoukat B; Hussain H; Shukrullah S; Naz MY; Rahman S; Ghanim AAJ; Nawalany G; Jakubowski T Sci Rep; 2023 Jun; 13(1):9057. PubMed ID: 37270598 [TBL] [Abstract][Full Text] [Related]
17. An Aspen plus process simulation model for exploring the feasibility and profitability of pyrolysis process for plastic waste management. Hasan MM; Rasul MG; Jahirul MI; Sattar MA J Environ Manage; 2024 Mar; 355():120557. PubMed ID: 38460332 [TBL] [Abstract][Full Text] [Related]
18. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor. Zhang H; Xiao R; Nie J; Jin B; Shao S; Xiao G Bioresour Technol; 2015 Sep; 192():68-74. PubMed ID: 26011693 [TBL] [Abstract][Full Text] [Related]
19. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Harussani MM; Sapuan SM; Rashid U; Khalina A; Ilyas RA Sci Total Environ; 2022 Jan; 803():149911. PubMed ID: 34525745 [TBL] [Abstract][Full Text] [Related]
20. Selective recovery of pyrolyzates of biodegradable (PLA, PHBH) and common plastics (HDPE, PP, PS) during co-pyrolysis under slow heating. Adachi W; Kumagai S; Shao Z; Saito Y; Yoshioka T Sci Rep; 2024 Jul; 14(1):16476. PubMed ID: 39014021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]