These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38484654)

  • 1. Altered foot placement modulation with somatosensory stimulation in people with chronic stroke.
    Schonhaut EB; Howard KE; Jacobs CJ; Knight HL; Chesnutt AN; Dean JC
    J Biomech; 2024 Mar; 166():112043. PubMed ID: 38484654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hip proprioceptive feedback influences the control of mediolateral stability during human walking.
    Roden-Reynolds DC; Walker MH; Wasserman CR; Dean JC
    J Neurophysiol; 2015 Oct; 114(4):2220-9. PubMed ID: 26289467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the effects of mediolateral surface and foot placement perturbations on balance control and response strategies during walking.
    Brough LG; Neptune RR
    Gait Posture; 2024 Feb; 108():313-319. PubMed ID: 38199090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented Hip Proprioception Influences Mediolateral Foot Placement During Walking.
    Knapp HA; Sobolewski BA; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2017-2026. PubMed ID: 34550889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory electrical stimulation improves foot placement during targeted stepping post-stroke.
    Walker ER; Hyngstrom AS; Schmit BD
    Exp Brain Res; 2014 Apr; 232(4):1137-43. PubMed ID: 24449007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of augmented somatosensory input using vibratory insoles to improve walking in individuals with chronic post-stroke hemiparesis.
    Liang JN; Ho KY; Hung V; Reilly A; Wood R; Yuskov N; Lee YJ
    Gait Posture; 2021 May; 86():77-82. PubMed ID: 33711614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of lateral stabilization on walking performance and balance control in neurologically-intact and post-stroke individuals.
    Frame HB; Finetto C; Dean JC; Neptune RR
    Clin Biomech (Bristol, Avon); 2020 Mar; 73():172-180. PubMed ID: 32004909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of experimentally reduced distal sensation on postural response to hip abductor/ankle evertor muscle vibration.
    Glasser S; Collings R; Paton J; Marsden J
    Gait Posture; 2015 Jul; 42(2):193-8. PubMed ID: 26153881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual muscle responses to mediolateral foot placement perturbations during walking.
    Brough LG; Neptune RR
    J Biomech; 2022 Aug; 141():111201. PubMed ID: 35764014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of human gait stability through foot placement.
    Bruijn SM; van Dieën JH
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired foot vibration sensitivity is related to altered plantar pressures during walking in people with multiple sclerosis.
    Jones SL; van Emmerik REA
    Mult Scler Relat Disord; 2023 Jul; 75():104767. PubMed ID: 37216882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Daily Use of Plantar Mechanical Stimulation Through Micro-Mobile Foot Compression Device Installed in Shoe Insoles on Vibration Perception, Gait, and Balance in People With Diabetic Peripheral Neuropathy.
    Kang GE; Zahiri M; Lepow B; Saleem N; Najafi B
    J Diabetes Sci Technol; 2019 Sep; 13(5):847-856. PubMed ID: 30943782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.
    Zissimopoulos A; Fatone S; Gard S
    Prosthet Orthot Int; 2015 Oct; 39(5):372-9. PubMed ID: 24878846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of plantar cutaneo-muscular and tendon vibration on posture and balance during quiet and perturbed stance.
    Thompson C; Bélanger M; Fung J
    Hum Mov Sci; 2011 Apr; 30(2):153-71. PubMed ID: 20580112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between foot vibration threshold and walking and balance functions in people with Multiple Sclerosis (PwMS).
    Uszynski M; Purtill H; Coote S
    Gait Posture; 2015 Jan; 41(1):228-32. PubMed ID: 25455206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-sensory vibratory noise augments the physiologic complexity of postural control in older adults.
    Zhou J; Lipsitz L; Habtemariam D; Manor B
    J Neuroeng Rehabil; 2016 May; 13(1):44. PubMed ID: 27142280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between asymmetry of quiet standing balance control and walking post-stroke.
    Hendrickson J; Patterson KK; Inness EL; McIlroy WE; Mansfield A
    Gait Posture; 2014 Jan; 39(1):177-81. PubMed ID: 23877032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hip abduction and adduction accuracy on post-stroke gait.
    Dean JC; Embry AE; Stimpson KH; Perry LA; Kautz SA
    Clin Biomech (Bristol, Avon); 2017 May; 44():14-20. PubMed ID: 28285142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hip recovery strategy used by below-knee amputees following mediolateral foot perturbations.
    Miller SE; Segal AD; Klute GK; Neptune RR
    J Biomech; 2018 Jul; 76():61-67. PubMed ID: 29887363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foot placement control and gait instability among people with stroke.
    Dean JC; Kautz SA
    J Rehabil Res Dev; 2015; 52(5):577-90. PubMed ID: 26437301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.