These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38484654)

  • 21. Effects of vestibular stimulation on gait stability when walking at different step widths.
    Magnani RM; van Dieën JH; Bruijn SM
    Exp Brain Res; 2023 Jan; 241(1):49-58. PubMed ID: 36346447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mediolateral foot placement ability during ambulation in individuals with chronic post-stroke hemiplegia.
    Zissimopoulos A; Stine R; Fatone S; Gard S
    Gait Posture; 2014 Apr; 39(4):1097-102. PubMed ID: 24582515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-stroke deficits in mediolateral foot placement accuracy depend on the prescribed walking task.
    Stimpson KH; Embry AE; Dean JC
    J Biomech; 2021 Nov; 128():110738. PubMed ID: 34509909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Configurable, wearable sensing and vibrotactile feedback system for real-time postural balance and gait training: proof-of-concept.
    Xu J; Bao T; Lee UH; Kinnaird C; Carender W; Huang Y; Sienko KH; Shull PB
    J Neuroeng Rehabil; 2017 Oct; 14(1):102. PubMed ID: 29020959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can optical flow perturbations detect walking balance impairment in people with multiple sclerosis?
    Selgrade BP; Meyer D; Sosnoff JJ; Franz JR
    PLoS One; 2020; 15(3):e0230202. PubMed ID: 32155225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mastoid Vibration Affects Dynamic Postural Control During Gait.
    Chien JH; Mukherjee M; Stergiou N
    Ann Biomed Eng; 2016 Sep; 44(9):2774-84. PubMed ID: 26833038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical response to mediolateral foot-placement perturbations during walking.
    Brough LG; Klute GK; Neptune RR
    J Biomech; 2021 Feb; 116():110213. PubMed ID: 33465580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hip abductor control in walking following stroke -- the immediate effect of canes, taping and TheraTogs on gait.
    Maguire C; Sieben JM; Frank M; Romkes J
    Clin Rehabil; 2010 Jan; 24(1):37-45. PubMed ID: 19906767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle contributions to mediolateral and anteroposterior foot placement during walking.
    Roelker SA; Kautz SA; Neptune RR
    J Biomech; 2019 Oct; 95():109310. PubMed ID: 31451199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visuomotor error augmentation affects mediolateral head and trunk stabilization during walking.
    Qiao M; Richards JT; Franz JR
    Hum Mov Sci; 2019 Dec; 68():102525. PubMed ID: 31731210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Responses of human hip abductor muscles to lateral balance perturbations during walking.
    Hof AL; Duysens J
    Exp Brain Res; 2013 Oct; 230(3):301-10. PubMed ID: 23934442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subthreshold electrical noise alters walking balance control in individuals with cerebral palsy.
    Sansare A; Reimann H; Crenshaw J; Arcodia M; Verma K; Lee SCK
    Gait Posture; 2023 Sep; 106():47-52. PubMed ID: 37659222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vibrating insoles and balance control in elderly people.
    Priplata AA; Niemi JB; Harry JD; Lipsitz LA; Collins JJ
    Lancet; 2003 Oct; 362(9390):1123-4. PubMed ID: 14550702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of a local vibration stimulus training programme on postural sway and gait in chronic stroke patients: a randomized controlled trial.
    Lee SW; Cho KH; Lee WH
    Clin Rehabil; 2013 Oct; 27(10):921-31. PubMed ID: 23818408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2018 Feb; 68():93-98. PubMed ID: 29317105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people.
    Lipsitz LA; Lough M; Niemi J; Travison T; Howlett H; Manor B
    Arch Phys Med Rehabil; 2015 Mar; 96(3):432-9. PubMed ID: 25450133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of external lateral stabilization on the use of foot placement to control mediolateral stability in walking and running.
    Mahaki M; Bruijn SM; van Dieën JH
    PeerJ; 2019; 7():e7939. PubMed ID: 31681515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mediolateral footpath stabilization during walking in people following stroke.
    Kao PC; Srivastava S
    PLoS One; 2018; 13(11):e0208120. PubMed ID: 30496257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-Stroke Adaptation of Lateral Foot Placement Coordination in Variable Environments.
    Dragunas AC; Cornwell T; Lopez-Rosado R; Gordon KE
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():731-739. PubMed ID: 33835919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.