These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38484757)

  • 21. Vision and Haptics Share Spatial Attentional Resources and Visuotactile Integration Is Not Affected by High Attentional Load.
    Wahn B; König P
    Multisens Res; 2015; 28(3-4):371-92. PubMed ID: 26288905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bidirectional transfer between joint and individual actions in a task of discrete force production.
    Masumoto J; Inui N
    Exp Brain Res; 2017 Jul; 235(7):2259-2265. PubMed ID: 28456819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practice-related optimization and transfer of executive functions: a general review and a specific realization of their mechanisms in dual tasks.
    Strobach T; Salminen T; Karbach J; Schubert T
    Psychol Res; 2014 Nov; 78(6):836-51. PubMed ID: 24668506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning.
    Bapi RS; Doya K; Harner AM
    Exp Brain Res; 2000 May; 132(2):149-62. PubMed ID: 10853941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of aging on the asymmetry of inter-limb transfer in a visuomotor task.
    Pan Z; Van Gemmert AW
    Exp Brain Res; 2013 Sep; 229(4):621-33. PubMed ID: 23831848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of attentional demands during motor learning: validity of a dual-task probe paradigm.
    Goh HT; Gordon J; Sullivan KJ; Winstein CJ
    J Mot Behav; 2014; 46(2):95-105. PubMed ID: 24447033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissociable contributions of motor-execution and action-observation to intermanual transfer.
    Hayes SJ; Andrew M; Elliott D; Roberts JW; Bennett SJ
    Neurosci Lett; 2012 Jan; 506(2):346-50. PubMed ID: 22155050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crossing the hands disrupts tactile spatial attention but not motor attention: evidence from event-related potentials.
    Gherri E; Forster B
    Neuropsychologia; 2012 Jul; 50(9):2303-16. PubMed ID: 22683449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stay Focused! The Effects of Internal and External Focus of Attention on Movement Automaticity in Patients with Stroke.
    Kal EC; van der Kamp J; Houdijk H; Groet E; van Bennekom CA; Scherder EJ
    PLoS One; 2015; 10(8):e0136917. PubMed ID: 26317437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual attention during the preparation of bimanual movements.
    Baldauf D; Deubel H
    Vision Res; 2008 Feb; 48(4):549-63. PubMed ID: 18206205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor learning and movement automatization in typically developing children: The role of instructions with an external or internal focus of attention.
    Krajenbrink H; van Abswoude F; Vermeulen S; van Cappellen S; Steenbergen B
    Hum Mov Sci; 2018 Aug; 60():183-190. PubMed ID: 29945034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attentional and visual demands for sprint performance in non-fatigued and fatigued conditions: reliability of a repeated sprint test.
    Reininga IH; Lemmink KA; Diercks RL; Buizer AT; Stevens M
    BMC Musculoskelet Disord; 2010 May; 11():84. PubMed ID: 20438646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attentional demands of perturbation evoked compensatory stepping responses: examining cognitive-motor interference to large magnitude forward perturbations.
    Patel PJ; Bhatt T
    J Mot Behav; 2015; 47(3):201-10. PubMed ID: 25559427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Idiosyncratic Patterns of Representational Similarity in Prefrontal Cortex Predict Attentional Performance.
    Lee J; Geng JJ
    J Neurosci; 2017 Feb; 37(5):1257-1268. PubMed ID: 28028199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Age on Attentional Control in Dual-Tasking.
    Bier B; Lecavalier NC; Malenfant D; Peretz I; Belleville S
    Exp Aging Res; 2017; 43(2):161-177. PubMed ID: 28230418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Movement planning and attentional control of visuospatial working memory: evidence from a grasp-to-place task.
    Spiegel MA; Koester D; Schack T
    Psychol Res; 2014 Jul; 78(4):494-505. PubMed ID: 23832553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional neuroimaging of the interference between working memory and the control of periodic ankle movement timing.
    Johannsen L; Li KZ; Chechlacz M; Bibi A; Kourtzi Z; Wing AM
    Neuropsychologia; 2013 Sep; 51(11):2142-53. PubMed ID: 23876923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparing coordinated eye and hand movements: dual-task costs are not attentional.
    Jonikaitis D; Schubert T; Deubel H
    J Vis; 2010 Dec; 10(14):23. PubMed ID: 21172898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cerebellar damage impairs automaticity of a recently practiced movement.
    Lang CE; Bastian AJ
    J Neurophysiol; 2002 Mar; 87(3):1336-47. PubMed ID: 11877508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.
    Deprez S; Vandenbulcke M; Peeters R; Emsell L; Amant F; Sunaert S
    Neuropsychologia; 2013 Sep; 51(11):2251-60. PubMed ID: 23938320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.