These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38484810)

  • 41. Roles of phosphoramide derivatives in flame retardancy, thermal degradation and crystallization behaviors of polylactic acid.
    Hu X; Wang B; Guo Z; Fang Z; Chen P; Li J
    Int J Biol Macromol; 2022 Oct; 219():558-570. PubMed ID: 35907467
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving the flame retardancy and accelerating the degradation of poly (lactic acid) in soil by introducing fully bio-based additives.
    Qiu S; Li Y; Qi P; Meng D; Sun J; Li H; Cui Z; Gu X; Zhang S
    Int J Biol Macromol; 2021 Dec; 193(Pt A):44-52. PubMed ID: 34695492
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study of Compatibility and Flame Retardancy of TPU/PLA Composites.
    Hang Z; Lv Z; Feng L; Liu B
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of Inherently Flame-Retardant Phosphorylated PLA by Combination of Ring-Opening Polymerization and Reactive Extrusion.
    Mincheva R; Guemiza H; Hidan C; Moins S; Coulembier O; Dubois P; Laoutid F
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861398
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanically Robust and Flame-Retardant Polylactide Composites Based on In Situ Formation of Crosslinked Network Structure by DCP and TAIC.
    Chen Y; Wu X; Li M; Qian L; Zhou H
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054714
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functionalized lignin nanoparticles for producing mechanically strong and tough flame-retardant polyurethane elastomers.
    He T; Chen F; Zhu W; Yan N
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1339-1351. PubMed ID: 35460757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flame retardancy of sustainable polylactic acid and polyhydroxybutyrate (PLA/PHB) blends.
    Kervran M; Shabanian M; Vagner C; Ponçot M; Meier-Haack J; Laoutid F; Gaan S; Vahabi H
    Int J Biol Macromol; 2023 Nov; 251():126208. PubMed ID: 37567537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advances in Flame Retardant Poly(Lactic Acid).
    Tawiah B; Yu B; Fei B
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960801
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of their Melt-Spinnability.
    Maqsood M; Langensiepen F; Seide G
    Molecules; 2019 Apr; 24(8):. PubMed ID: 30999658
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions.
    Shi X; Jiang S; Zhu J; Li G; Peng X
    RSC Adv; 2018 Mar; 8(18):9985-9995. PubMed ID: 35540820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergistic Flame Retardancy of Phosphatized Sesbania Gum/Ammonium Polyphosphate on Polylactic Acid.
    Zhang Q; Liu H; Guan J; Yang X; Luo B
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of anti-dripping and flame-retardant polylactide modified with chitosan derivative/aluminum hypophosphite.
    Wang Y; Yuan J; Ma L; Yin X; Zhu Z; Song P
    Carbohydr Polym; 2022 Dec; 298():120141. PubMed ID: 36241306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic Enhancement of Flame Retardancy Behavior of Glass-Fiber Reinforced Polylactide Composites through Using Phosphorus-Based Flame Retardants and Chain Modifiers.
    Yargici Kovanci C; Nofar M; Ghanbari A
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. All-in-one bio-derived poly(L-lactic acid)-based composite with fire-resistance and smoke-suppression performance.
    Wang C; Zhang X; Nadzir MM; Uyama H; Tang W; Fu D; Xie Z; Wang C; Wang J; Yang J
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132610. PubMed ID: 38788876
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In-situ self-crosslinking strategy for super-tough polylactic acid/ bio-based polyurethane blends.
    Shou T; Wu Y; Yin D; Hu S; Wu S; Zhao X; Zhang L
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129757. PubMed ID: 38281538
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The improvement of flame retardancy and compatibility of PBAT/PLLA via a hybrid polyurethane.
    Yang J; Song X; Chen D; Liu Y; Wang Y; Shi J
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133057. PubMed ID: 38866295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flame-Retardant Properties and Mechanism of Polylactic Acid-Conjugated Flame-Retardant Composites.
    Zhang D; Pei M; Wei K; Tan F; Gao C; Bao D; Qin S
    Front Chem; 2022; 10():894112. PubMed ID: 35646831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of P-decorated POSS towards flame-retardant, mechanically-strong, tough and transparent epoxy resins.
    Wu T; Yang F; Tao J; Zhao HB; Yu C; Rao W
    J Colloid Interface Sci; 2023 Jun; 640():864-876. PubMed ID: 36907147
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.
    Chen H; Wang J; Ni A; Ding A; Han X; Sun Z
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324716
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study on the Flame Retardancy of Rigid Polyurethane Foam with Phytic Acid-Functionalized Graphene Oxide.
    Zhou X; Jiang F; Hu Z; Wu F; Gao M; Chai Z; Wang Y; Gu X; Wang Y
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.