These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38484992)

  • 1. Effective chloramine management without "burn" in biofilm affected nitrifying tanks using a low dose of copper.
    Chandra Sarker D; Bal Krishna KC; Ginige MP; Sathasivan A
    Chemosphere; 2024 Apr; 354():141709. PubMed ID: 38484992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of breakpoint chlorination to reduce accelerated chemical chloramine decay in severely nitrified bulk waters.
    Bal Krishna KC; Sathasivan A; Kastl G
    Chemosphere; 2014 Dec; 117():692-700. PubMed ID: 25461936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors controlling the effectiveness of rechlor(am)ination to recover chloramine from nitrification.
    Karthik NB; Bal Krishna KC; Sathasivan A
    Sci Total Environ; 2022 Feb; 806(Pt 3):151322. PubMed ID: 34743887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrite production by ammonia-oxidizing bacteria mediates chloramine decay and resistance in a mixed-species community.
    Keshvardoust P; Huron VAA; Clemson M; Barraud N; Rice SA
    Microb Biotechnol; 2020 Nov; 13(6):1847-1859. PubMed ID: 32729670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chloramine stress induces the production of chloramine decaying proteins by microbes in biomass (biofilm).
    Herath BS; Sathasivan A
    Chemosphere; 2020 Jan; 238():124526. PubMed ID: 31466002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling combined effect of chloramine and copper on ammonia-oxidizing microbial activity using a biostability approach.
    Sarker DC; Sathasivan A; Rittmann BE
    Water Res; 2015 Nov; 84():190-7. PubMed ID: 26233658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abundance and activity of ammonia oxidizing archaea and bacteria in bulk water and biofilm in water supply systems practicing chlorination and chloramination: Full and laboratory scale investigations.
    Roy D; McEvoy J; Khan E
    Sci Total Environ; 2020 May; 715():137043. PubMed ID: 32041059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial community changes with decaying chloramine residuals in a lab-scale system.
    Bal Krishna KC; Sathasivan A; Ginige MP
    Water Res; 2013 Sep; 47(13):4666-79. PubMed ID: 23770481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Nitrogen Metabolism in Chloraminated Drinking Water Reservoirs.
    Potgieter SC; Dai Z; Venter SN; Sigudu M; Pinto AJ
    mSphere; 2020 Apr; 5(2):. PubMed ID: 32350093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of feed water NOM variation on chloramine demand from chloramine-decaying soluble microbial products during rechloramination.
    Herath BS; Torres A; Sathasivan A
    Chemosphere; 2018 Dec; 212():744-754. PubMed ID: 30179839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a chloramine decay index to understand nitrification: A case study of two chloraminated drinking water distribution systems.
    Moradi S; Liu S; Chow CWK; van Leeuwen J; Cook D; Drikas M; Amal R
    J Environ Sci (China); 2017 Jul; 57():170-179. PubMed ID: 28647237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Onset of severe nitrification in mildly nitrifying chloraminated bulk waters and its relation to biostability.
    Sathasivan A; Fisher I; Tam T
    Water Res; 2008 Aug; 42(14):3623-32. PubMed ID: 18649914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The "Burn": water quality and microbiological impacts related to limited free chlorine disinfection periods in a chloramine system.
    Alfredo K
    Water Res; 2021 Jun; 197():117044. PubMed ID: 33799083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrification and potential control mechanisms in simulated premises plumbing.
    Rahman MS; Encarnacion G; Camper AK
    Water Res; 2011 Nov; 45(17):5511-22. PubMed ID: 21880342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of free ammonia concentration on monochloramine penetration within a nitrifying biofilm and its effect on activity, viability, and recovery.
    Pressman JG; Lee WH; Bishop PL; Wahman DG
    Water Res; 2012 Mar; 46(3):882-94. PubMed ID: 22192761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples.
    Bal Krishna KC; Sathasivan A; Chandra Sarker D
    Water Res; 2012 Sep; 46(13):3977-88. PubMed ID: 22695354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterotrophic bacteria isolated from a chloraminated system accelerate chloramine decay.
    Seenivasagham V; K C BK; Chandy JP; Kastl G; Blackall LL; Rittmann B; Sathasivan A
    Chemosphere; 2024 Jul; 359():142341. PubMed ID: 38754485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system.
    Wang H; Proctor CR; Edwards MA; Pryor M; Santo Domingo JW; Ryu H; Camper AK; Olson A; Pruden A
    Environ Sci Technol; 2014 Sep; 48(18):10624-33. PubMed ID: 25118569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature and disinfection strategies on ammonia-oxidizing bacteria in a bench-scale drinking water distribution system.
    Pintar KD; Slawson RM
    Water Res; 2003 Apr; 37(8):1805-17. PubMed ID: 12697225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is nitrification the only cause of microbiologically induced chloramine decay?
    Sawade E; Monis P; Cook D; Drikas M
    Water Res; 2016 Jan; 88():904-911. PubMed ID: 26614969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.