These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38484999)

  • 81. Lignin-facilitated growth of Ag/CuNPs on surface-activated polyacryloamidoxime nanofibers for superior antibacterial activity with improved biocompatibility.
    Haider MK; Kharaghani D; Yoshiko Y; Kim IS
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124945. PubMed ID: 37211079
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Biosynthesized silver nanoparticles for inhibition of antibacterial resistance and biofilm formation of methicillin-resistant coagulase negative Staphylococci.
    Rajivgandhi G; Maruthupandy M; Muneeswaran T; Anand M; Quero F; Manoharan N; Li WJ
    Bioorg Chem; 2019 Aug; 89():103008. PubMed ID: 31151056
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity.
    Ishwarya R; Vaseeharan B; Kalyani S; Banumathi B; Govindarajan M; Alharbi NS; Kadaikunnan S; Al-Anbr MN; Khaled JM; Benelli G
    J Photochem Photobiol B; 2018 Jan; 178():249-258. PubMed ID: 29169140
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Ecofriendly preparation of silver nanoparticles-based nanocomposite stabilized by polysaccharides with antibacterial, antifungal and antiviral activities.
    Hasanin M; Elbahnasawy MA; Shehabeldine AM; Hashem AH
    Biometals; 2021 Dec; 34(6):1313-1328. PubMed ID: 34564808
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi.
    Jayaseelan C; Rahuman AA; Kirthi AV; Marimuthu S; Santhoshkumar T; Bagavan A; Gaurav K; Karthik L; Rao KV
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 May; 90():78-84. PubMed ID: 22321514
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Green synthesis of zinc oxide nanoparticles using lychee peel and its application in anti-bacterial properties and CR dye removal from wastewater.
    Sachin ; Jaishree ; Singh N; Singh R; Shah K; Pramanik BK
    Chemosphere; 2023 Jun; 327():138497. PubMed ID: 37001759
    [TBL] [Abstract][Full Text] [Related]  

  • 87. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using
    Escárcega-González CE; Garza-Cervantes JA; Vázquez-Rodríguez A; Montelongo-Peralta LZ; Treviño-González MT; Díaz Barriga Castro E; Saucedo-Salazar EM; Chávez Morales RM; Regalado Soto DI; Treviño González FM; Carrazco Rosales JL; Cruz RV; Morones-Ramírez JR
    Int J Nanomedicine; 2018; 13():2349-2363. PubMed ID: 29713166
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Comparative study between zinc oxide nanoparticles synthesis by biogenic and wet chemical methods in vivo and in vitro against Staphylococcus aureus.
    Hamouda RA; Yousuf WE; Mohammed ABA; Mohammed RS; Darwish DB; Abdeen EE
    Microb Pathog; 2020 Oct; 147():104384. PubMed ID: 32679246
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Green Synthesis of Silver Nanoparticles Using the Flower Extract of
    Devanesan S; AlSalhi MS
    Int J Nanomedicine; 2021; 16():3343-3356. PubMed ID: 34017172
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity.
    Mallakpour S; Okhovat M
    Int J Biol Macromol; 2021 Apr; 175():330-340. PubMed ID: 33556403
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Comparative efficacy of cephradine-loaded silver and gold nanoparticles against resistant human pathogens.
    Khan A; Jabeen H; Ahmad T; Rehman NU; Khan SS; Shareef H; Sarwar R; Yahya S; Hussain N; Uddin J; Hussain J; Al-Harrasi A
    Artif Cells Nanomed Biotechnol; 2022 Dec; 50(1):312-321. PubMed ID: 36380462
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate.
    Ganesh Babu MM; Gunasekaran P
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):191-5. PubMed ID: 19660920
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity.
    Vasil'kov A; Butenko I; Naumkin A; Voronova A; Golub A; Buzin M; Shtykova E; Volkov V; Sadykova V
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108827
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Innovative biosynthesis of silver nanoparticles using yeast glucan nanopolymer and their potentiality as antibacterial composite.
    Elnagar SE; Tayel AA; Elguindy NM; Al-Saggaf MS; Moussa SH
    J Basic Microbiol; 2021 Aug; 61(8):677-685. PubMed ID: 34146360
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria.
    Taglietti A; Diaz Fernandez YA; Amato E; Cucca L; Dacarro G; Grisoli P; Necchi V; Pallavicini P; Pasotti L; Patrini M
    Langmuir; 2012 May; 28(21):8140-8. PubMed ID: 22546237
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity.
    Indhira D; Krishnamoorthy M; Ameen F; Bhat SA; Arumugam K; Ramalingam S; Priyan SR; Kumar GS
    Environ Res; 2022 Sep; 212(Pt C):113323. PubMed ID: 35472463
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods.
    Samberg ME; Orndorff PE; Monteiro-Riviere NA
    Nanotoxicology; 2011 Jun; 5(2):244-53. PubMed ID: 21034371
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.
    McGuffie MJ; Hong J; Bahng JH; Glynos E; Green PF; Kotov NA; Younger JG; VanEpps JS
    Nanomedicine; 2016 Jan; 12(1):33-42. PubMed ID: 26515755
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Antibacterial activity of green gold and silver nanoparticles using ginger root extract.
    Yadi M; Azizi M; Dianat-Moghadam H; Akbarzadeh A; Abyadeh M; Milani M
    Bioprocess Biosyst Eng; 2022 Dec; 45(12):1905-1917. PubMed ID: 36269380
    [TBL] [Abstract][Full Text] [Related]  

  • 100. One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using
    Hamida RS; Ali MA; Alfassam HE; Momenah MA; Alkhateeb MA; Bin-Meferij MM
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36839850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.