These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38485021)

  • 41. Nucleation and growth kinetics of struvite crystallization.
    Mehta CM; Batstone DJ
    Water Res; 2013 May; 47(8):2890-900. PubMed ID: 23541308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synchronous COD removal and nitrogen recovery from high concentrated pharmaceutical wastewater by an integrated chemo-biocatalytic reactor systems.
    P M; A M; K PM; Sekar K; S S; Srinivasan SV; K SB; G S
    J Environ Manage; 2023 Mar; 329():117048. PubMed ID: 36542888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced struvite generation and separation by magnesium anode electrolysis coupled with cathode electrodeposition.
    Wang L; Gu K; Zhang Y; Sun J; Gu Z; Zhao B; Hu C
    Sci Total Environ; 2022 Jan; 804():150101. PubMed ID: 34517320
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Struvite pyrolysate recycling combined with dry pyrolysis for ammonium removal from wastewater.
    Yu R; Geng J; Ren H; Wang Y; Xu K
    Bioresour Technol; 2013 Mar; 132():154-9. PubMed ID: 23395767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MAP precipitation from landfill leachate and seawater bittern waste.
    Li XZ; Zhao QL
    Environ Technol; 2002 Sep; 23(9):989-1000. PubMed ID: 12361384
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Competitive adsorption of heavy metals between Ca-P and Mg-P products from wastewater during struvite crystallization.
    Wang Y; Da J; Deng Y; Wang R; Liu X; Chang J
    J Environ Manage; 2023 Jun; 335():117552. PubMed ID: 36848811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate.
    Qiu L; Shi L; Liu Z; Xie K; Wang J; Zhang S; Song Q; Lu L
    Ultrason Sonochem; 2017 May; 36():123-128. PubMed ID: 28069191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of a dual-chamber electrolytic reactor with a magnesium anode and characterization of struvite produced from synthetic wastewater.
    Robinson Junior NA; Wu SX; Zhu J; Zhan Y
    Environ Technol; 2023 Nov; 44(25):3911-3925. PubMed ID: 35545934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of struvite pellets crystallization in a full-scale plant using an industrial grade magnesium product.
    Crutchik D; Morales N; Vázquez-Padín JR; Garrido JM
    Water Sci Technol; 2017 Feb; 75(3-4):609-618. PubMed ID: 28192355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Struvite precipitation and phosphorus removal using magnesium sacrificial anode.
    Kruk DJ; Elektorowicz M; Oleszkiewicz JA
    Chemosphere; 2014 Apr; 101():28-33. PubMed ID: 24387911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Effect of pH on precipitate composition during phosphorus recovery as struvite from swine wastewater].
    Bao XD; Ye ZL; Ma JH; Chen SH; Lin LF; Yan YJ
    Huan Jing Ke Xue; 2011 Sep; 32(9):2598-603. PubMed ID: 22165227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced phosphorus removal using acid-treated magnesium slag particles.
    Tang X; Li R; Wu M; Dong L; Wang Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3860-3871. PubMed ID: 29178003
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent.
    Zhang T; Bowers KE; Harrison JH; Chen S
    Water Environ Res; 2010 Jan; 82(1):34-42. PubMed ID: 20112536
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors.
    Li B; Huang HM; Boiarkina I; Yu W; Huang YF; Wang GQ; Young BR
    J Environ Manage; 2019 Oct; 248():109254. PubMed ID: 31306927
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery.
    Wang J; Song Y; Yuan P; Peng J; Fan M
    Chemosphere; 2006 Nov; 65(7):1182-7. PubMed ID: 16684557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recovery of ammonia as struvite from anaerobic digester effluents.
    Celen I; Türker M
    Environ Technol; 2001 Nov; 22(11):1263-72. PubMed ID: 11804347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new approach to removing and recovering phosphorus from livestock wastewater using dolomite.
    Yin Z; Chen Q; Zhao C; Fu Y; Li J; Feng Y; Li L
    Chemosphere; 2020 Sep; 255():127005. PubMed ID: 32416395
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater.
    Song Y; Yuan P; Zheng B; Peng J; Yuan F; Gao Y
    Chemosphere; 2007 Sep; 69(2):319-24. PubMed ID: 17619051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel treatment processes of struvite with pretreated magnesite as a source of low-cost magnesium.
    Yu R; Ren H; Wu J; Zhang X
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22204-22213. PubMed ID: 28795378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.
    Zhang T; Ding L; Ren H; Xiong X
    Water Res; 2009 Dec; 43(20):5209-15. PubMed ID: 19850316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.