These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38485668)

  • 21. Molecular Driving Forces in Peptide Adsorption to Metal Oxide Surfaces.
    Mao CM; Sampath J; Sprenger KG; Drobny G; Pfaendtner J
    Langmuir; 2019 Apr; 35(17):5911-5920. PubMed ID: 30955325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary structure and dynamics study of the intrinsically disordered silica-mineralizing peptide P
    Zerfaß C; Buchko GW; Shaw WJ; Hobe S; Paulsen H
    Proteins; 2017 Nov; 85(11):2111-2126. PubMed ID: 28799215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid interaction and membrane perturbation of human islet amyloid polypeptide monomer and dimer by molecular dynamics simulations.
    Zhang Y; Luo Y; Deng Y; Mu Y; Wei G
    PLoS One; 2012; 7(5):e38191. PubMed ID: 22693597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of peptide scaffolds in biosilica formation: computer simulations of a coarse-grained model.
    Lenoci L; Camp PJ
    J Am Chem Soc; 2006 Aug; 128(31):10111-7. PubMed ID: 16881640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Diatom Peptide R5 Fabricates Two-Dimensional Titanium Dioxide Nanosheets.
    Bregnhøj M; Lutz H; Roeters SJ; Lieberwirth I; Mertig R; Weidner T
    J Phys Chem Lett; 2022 Jun; 13(22):5025-5029. PubMed ID: 35652659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation as a tool to modulate aggregation propensity and to predict fibril architecture.
    Valette NM; Radford SE; Harris SA; Warriner SL
    Chembiochem; 2012 Jan; 13(2):271-81. PubMed ID: 22174034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insight into the Binding Mechanisms of Quartz-Selective Peptides: Toward Greener Flotation Processes.
    Alizadeh Sahraei A; Mejia Bohorquez B; Tremblay D; Moineau S; Garnier A; Larachi F; Lagüe P
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17922-17937. PubMed ID: 37010879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphology of artificial silica matrices formed via autosilification of a silaffin/protein polymer chimera.
    Marner WD; Shaikh AS; Muller SJ; Keasling JD
    Biomacromolecules; 2008 Jan; 9(1):1-5. PubMed ID: 18092760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyroglutamylation modulates electronic properties and the conformational ensemble of the amyloid β-peptide.
    Davidson DS; Lemkul JA
    Proteins; 2024 Jul; 92(7):842-853. PubMed ID: 38436541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peptides from diatoms and grasses harness phosphate ion binding to silica to help regulate biomaterial structure.
    Adiram-Filiba N; Geiger Y; Kumar S; Keinan-Adamsky K; Elbaum R; Goobes G
    Acta Biomater; 2020 Aug; 112():286-297. PubMed ID: 32434074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dimer formation enhances structural differences between amyloid β-protein (1-40) and (1-42): an explicit-solvent molecular dynamics study.
    Barz B; Urbanc B
    PLoS One; 2012; 7(4):e34345. PubMed ID: 22509291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physisorption of α-chymotrypsin on SiO2 and TiO2: A comparative study via experiments and molecular dynamics simulations.
    Derr L; Hildebrand N; Köppen S; Kunze S; Treccani L; Dringen R; Rezwan K; Colombi Ciacchi L
    Biointerphases; 2016 Mar; 11(1):011007. PubMed ID: 26869164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of a calmodulin-peptide complex in solution.
    Yang C; Kuczera K
    J Biomol Struct Dyn; 2002 Oct; 20(2):179-97. PubMed ID: 12354070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomistic Details of Peptide Reversed-Phase Liquid Chromatography from Molecular Dynamics Simulations.
    Scrosati PM; Konermann L
    Anal Chem; 2023 Feb; 95(7):3892-3900. PubMed ID: 36745777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hofmeister Effects on Peptide Amphiphile Nanofiber Self-Assembly.
    Iscen A; Schatz GC
    J Phys Chem B; 2019 Aug; 123(32):7006-7013. PubMed ID: 31337221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of interaction with coesite silica on the conformation of Cecropin P1 using explicit solvent molecular dynamics simulation.
    Wu X; Chang H; Mello C; Nagarajan R; Narsimhan G
    J Chem Phys; 2013 Jan; 138(4):045103. PubMed ID: 23387625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.