BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38485940)

  • 21. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application.
    Asmat S; Husain Q
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():25-36. PubMed ID: 30889698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical and Covalent Immobilization of Lipase onto Amine Groups Bearing Thiol-Ene Photocured Coatings.
    Çakmakçi E; Muhsir P; Demir S
    Appl Biochem Biotechnol; 2017 Mar; 181(3):1030-1047. PubMed ID: 27704477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immobilization of Moniliella spathulata R25L270 Lipase on Ionic, Hydrophobic and Covalent Supports: Functional Properties and Hydrolysis of Sardine Oil.
    Souza LTA; Moreno-Perez S; Fernández Lorente G; Cipolatti EP; de Oliveira D; Resende RR; Pessela BC
    Molecules; 2017 Sep; 22(10):. PubMed ID: 28946698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immobilization of thermophilic lipase in inorganic hybrid nanoflower through biomimetic mineralization.
    Liu Y; Shao X; Kong D; Li G; Li Q
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111450. PubMed ID: 33181387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification.
    Cao Y; Wu Z; Wang T; Xiao Y; Huo Q; Liu Y
    Dalton Trans; 2016 Apr; 45(16):6998-7003. PubMed ID: 26988724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced enzyme stability through site-directed covalent immobilization.
    Wu JC; Hutchings CH; Lindsay MJ; Werner CJ; Bundy BC
    J Biotechnol; 2015 Jan; 193():83-90. PubMed ID: 25449015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enantioselective Resolution of (R, S)-2-Phenoxy-Propionic Acid Methyl Ester by Covalent Immobilized Lipase from Aspergillus oryzae.
    Zhong W; Zhang M; Li X; Zhang Y; Wang Z; Zheng J
    Appl Biochem Biotechnol; 2020 Mar; 190(3):1049-1059. PubMed ID: 31664700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and Characterization of Aminoamidine-Based Polyacrylonitrile Fibers for Lipase Immobilization with Effective Reusability and Storage Stability.
    Al Angari YM; Almulaiky YQ; Alotaibi MM; Hussein MA; El-Shishtawy RM
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combinatorial High-Throughput Screening of Complex Polymeric Enzyme Immobilization Supports.
    Sánchez-Morán H; Kaar JL; Schwartz DK
    J Am Chem Soc; 2024 Apr; 146(13):9112-9123. PubMed ID: 38500441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry.
    Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N
    J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme.
    Tang W; Chen C; Sun W; Wang P; Wei D
    Int J Biol Macromol; 2019 May; 128():814-824. PubMed ID: 30708009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Core-Shell Structured Immobilized Lipase and Its Application in High-Temperature Reactions.
    Deng L; Tian J; Xu J; Wang F; Nie K; Tan T
    Appl Biochem Biotechnol; 2019 Nov; 189(3):774-786. PubMed ID: 31119528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective and eco-friendly synthesis of lipoaminoacid-based surfactants for food, using immobilized lipase and protease biocatalysts.
    Bernal C; Guzman F; Illanes A; Wilson L
    Food Chem; 2018 Jan; 239():189-195. PubMed ID: 28873558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorographene and Graphane as an Excellent Platform for Enzyme Biocatalysis.
    Hermanová S; Bouša D; Mazánek V; Sedmidubský D; Plutnar J; Pumera M; Sofer Z
    Chemistry; 2018 Nov; 24(63):16833-16839. PubMed ID: 30117202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical characterization and stability assessment of Rhizopus oryzae lipase covalently immobilized on amino-functionalized magnetic nanoparticles.
    Pashangeh K; Akhond M; Karbalaei-Heidari HR; Absalan G
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):300-307. PubMed ID: 28711611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilization of Candida antarctica lipase B by adsorption in organic medium.
    Sun J; Jiang Y; Zhou L; Gao J
    N Biotechnol; 2010 Feb; 27(1):53-8. PubMed ID: 20004754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance.
    Suo H; Xu L; Xue Y; Qiu X; Huang H; Hu Y
    Carbohydr Polym; 2020 Apr; 234():115914. PubMed ID: 32070532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles.
    Aggarwal V; Pundir CS
    Methods Enzymol; 2016; 571():197-223. PubMed ID: 27112401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covalent Immobilization of Enzymes on Eupergit
    Knežević-Jugović ZD; Grbavčić SŽ; Jovanović JR; Stefanović AB; Bezbradica DI; Mijin DŽ; Antov MG
    Methods Mol Biol; 2017; 1504():75-91. PubMed ID: 27770415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced thermostability of silica-immobilized lipase from Bacillus coagulans BTS-3 and synthesis of ethyl propionate.
    Kumar S; Pahujani S; Ola RP; Kanwar SS; Gupta R
    Acta Microbiol Immunol Hung; 2006 Jun; 53(2):219-31. PubMed ID: 16956131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.