These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38485942)

  • 1. A multi-source molecular network representation model for protein-protein interactions prediction.
    Zou HT; Ji BY; Xie XL
    Sci Rep; 2024 Mar; 14(1):6184. PubMed ID: 38485942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of drug-target interactions from multi-molecular network based on LINE network representation method.
    Ji BY; You ZH; Jiang HJ; Guo ZH; Zheng K
    J Transl Med; 2020 Sep; 18(1):347. PubMed ID: 32894154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepWalk based method to predict lncRNA-miRNA associations via lncRNA-miRNA-disease-protein-drug graph.
    Yang L; Li LP; Yi HC
    BMC Bioinformatics; 2022 Feb; 22(Suppl 12):621. PubMed ID: 35216549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest.
    You ZH; Chan KC; Hu P
    PLoS One; 2015; 10(5):e0125811. PubMed ID: 25946106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein-protein interactions by fusing various Chou's pseudo components and using wavelet denoising approach.
    Tian B; Wu X; Chen C; Qiu W; Ma Q; Yu B
    J Theor Biol; 2019 Feb; 462():329-346. PubMed ID: 30452960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network.
    Jiang H; Huang Y
    BMC Bioinformatics; 2022 Jan; 23(1):9. PubMed ID: 34983364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting miRNA-disease associations based on graph attention network with multi-source information.
    Li G; Fang T; Zhang Y; Liang C; Xiao Q; Luo J
    BMC Bioinformatics; 2022 Jun; 23(1):244. PubMed ID: 35729531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation.
    Li Y; Wang Z; You ZH; Li LP; Hu X
    Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-channel graph attention autoencoders for disease-related lncRNAs prediction.
    Sheng N; Huang L; Wang Y; Zhao J; Xuan P; Gao L; Cao Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-view heterogeneous molecular network representation learning for protein-protein interaction prediction.
    Su XR; Hu L; You ZH; Hu PW; Zhao BW
    BMC Bioinformatics; 2022 Jun; 23(1):234. PubMed ID: 35710342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A learning based framework for diverse biomolecule relationship prediction in molecular association network.
    Guo ZH; You ZH; Huang DS; Yi HC; Chen ZH; Wang YB
    Commun Biol; 2020 Mar; 3(1):118. PubMed ID: 32170157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion.
    Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S
    Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning Representation of Molecules in Association Network for Predicting Intermolecular Associations.
    Yi HC; You ZH; Guo ZH; Huang DS; Chan KCC
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2546-2554. PubMed ID: 32070992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Protein-Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information.
    Ding Y; Tang J; Guo F
    Int J Mol Sci; 2016 Sep; 17(10):. PubMed ID: 27669239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model.
    Ji BY; You ZH; Cheng L; Zhou JR; Alghazzawi D; Li LP
    Sci Rep; 2020 Apr; 10(1):6658. PubMed ID: 32313121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iGRLCDA: identifying circRNA-disease association based on graph representation learning.
    Zhang HY; Wang L; You ZH; Hu L; Zhao BW; Li ZW; Li YM
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.