These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38486319)

  • 21. Developing a fatigue questionnaire for Chinese civil aviation pilots.
    Dai J; Luo M; Hu W; Ma J; Wen Z
    Int J Occup Saf Ergon; 2020 Mar; 26(1):37-45. PubMed ID: 29570043
    [No Abstract]   [Full Text] [Related]  

  • 22. Biomathematical modeling of fatigue due to sleep inertia.
    McCauley ME; McCauley P; Kalachev LV; Riedy SM; Banks S; Ecker AJ; Dinges DF; Van Dongen HPA
    J Theor Biol; 2024 Aug; 590():111851. PubMed ID: 38782198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aspects of work and sleep associated with work ability in regular aviation pilots.
    Pellegrino P; Marqueze EC
    Rev Saude Publica; 2019 Jan; 53():16. PubMed ID: 30726497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morning sleep inertia in alertness and performance: effect of cognitive domain and white light conditions.
    Santhi N; Groeger JA; Archer SN; Gimenez M; Schlangen LJ; Dijk DJ
    PLoS One; 2013; 8(11):e79688. PubMed ID: 24260280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Change Detection Flicker Task Effects on Simulator-Induced Spatial Disorientation Events.
    Lewkowicz R; Fudali-Czyż A; Bałaj B; Francuz P
    Aerosp Med Hum Perform; 2018 Oct; 89(10):863-872. PubMed ID: 30219113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short and Long Haul Pilots Rosters, Stress, Sleep Problems, Fatigue, Mental Health, and Well-Being.
    Venus M; Holtforth MG
    Aerosp Med Hum Perform; 2021 Oct; 92(10):786-797. PubMed ID: 34641999
    [No Abstract]   [Full Text] [Related]  

  • 27. Alertness and psychomotor performance levels of marine pilots on an irregular work roster.
    Boudreau P; Lafrance S; Boivin DB
    Chronobiol Int; 2018 Jun; 35(6):773-784. PubMed ID: 29787295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue Among Student Pilots.
    Kilic B
    Aerosp Med Hum Perform; 2021 Jan; 92(1):20-24. PubMed ID: 33357268
    [No Abstract]   [Full Text] [Related]  

  • 29. Pilot Sleep in Long-Range and Ultra-Long-Range Commercial Flights.
    Lamp A; McCullough D; Chen JMC; Brown RE; Belenky G
    Aerosp Med Hum Perform; 2019 Feb; 90(2):109-115. PubMed ID: 30670120
    [No Abstract]   [Full Text] [Related]  

  • 30. Fatigue, Schedules, Sleep, and Sleepiness in U.S. Commercial Pilots During COVID-19.
    Hilditch CJ; Flynn-Evans EE
    Aerosp Med Hum Perform; 2022 May; 93(5):433-441. PubMed ID: 35551720
    [No Abstract]   [Full Text] [Related]  

  • 31. Sleep quality and stress: An investigation of collegiate aviation pilots.
    Mendonca FAC; Keller J; Albelo JD
    J Am Coll Health; 2023 Aug; ():1-10. PubMed ID: 37530754
    [No Abstract]   [Full Text] [Related]  

  • 32. Subjective Effects of Modafinil in Military Fighter Pilots During Deployment.
    Wingelaar-Jagt YQ; Wingelaar TT; Riedel WJ; Ramaekers JG
    Aerosp Med Hum Perform; 2022 Oct; 93(10):823. PubMed ID: 36243913
    [No Abstract]   [Full Text] [Related]  

  • 33. Sleep inertia associated with a 10-min nap before the commute home following a night shift: A laboratory simulation study.
    Hilditch CJ; Dorrian J; Centofanti SA; Van Dongen HP; Banks S
    Accid Anal Prev; 2017 Feb; 99(Pt B):411-415. PubMed ID: 26589387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of short naps during simulated night shifts on alertness and cognitive performance in young adults.
    Sakai A; Kawamoto N; Hayashi M
    J Sleep Res; 2023 Oct; 32(5):e13821. PubMed ID: 36703614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatiguing effect of multiple take-offs and landings in regional airline operations.
    Honn KA; Satterfield BC; McCauley P; Caldwell JL; Van Dongen HP
    Accid Anal Prev; 2016 Jan; 86():199-208. PubMed ID: 26590506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue in aviation.
    Caldwell JA
    Travel Med Infect Dis; 2005 May; 3(2):85-96. PubMed ID: 17292011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Neuroadaptive Cognitive Model for Dealing With Uncertainty in Tracing Pilots' Cognitive State.
    Klaproth OW; Halbrügge M; Krol LR; Vernaleken C; Zander TO; Russwinkel N
    Top Cogn Sci; 2020 Jul; 12(3):1012-1029. PubMed ID: 32666616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulant Use as a Fatigue Countermeasure in Aviation.
    Ehlert AM; Wilson PB
    Aerosp Med Hum Perform; 2021 Mar; 92(3):190-200. PubMed ID: 33754977
    [No Abstract]   [Full Text] [Related]  

  • 39. The sleep inertia phenomenon during the sleep-wake transition: theoretical and operational issues.
    Ferrara M; De Gennaro L
    Aviat Space Environ Med; 2000 Aug; 71(8):843-8. PubMed ID: 10954363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pilot In-Flight Sleep During Long-Range and Ultra-Long Range Commercial Airline Flights.
    Rempe MJ; Basiarz E; Rasmussen I; Belenky G; Lamp A
    Aerosp Med Hum Perform; 2022 Apr; 93(4):368-375. PubMed ID: 35354516
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.