These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38486380)

  • 1. Quantum-Confined-Superfluidics-Enabled Multiresponsive MXene-Based Actuators.
    Ma B; Ma JN; Song P; Wang K; Zhang DM; Li Q; Zhang Q; Sang SB
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):15215-15226. PubMed ID: 38486380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable, Reversible, and Redefinable Deformation of GO Based on Quantum-Confined-Superfluidics Effect.
    Ma JN; Zhang YL; Han DD; Sun HB
    Nano Lett; 2022 Oct; 22(20):8093-8100. PubMed ID: 36201184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiresponsive Ti
    Tang ZH; Zhu WB; Mao YQ; Zhu ZC; Li YQ; Huang P; Fu SY
    ACS Appl Mater Interfaces; 2022 May; 14(18):21474-21485. PubMed ID: 35486453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-Confined-Superfluidics-Enabled Moisture Actuation Based on Unilaterally Structured Graphene Oxide Papers.
    Zhang YL; Liu YQ; Han DD; Ma JN; Wang D; Li XB; Sun HB
    Adv Mater; 2019 Aug; 31(32):e1901585. PubMed ID: 31197895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistimulus-Responsive Graphene Oxide/Fe
    Chathuranga H; Marriam I; Chen S; Zhang Z; MacLeod J; Liu Y; Yang H; Yan C
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16772-16779. PubMed ID: 35362958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remotely Controlled Light/Electric/Magnetic Multiresponsive Hydrogel for Fast Actuations.
    Wei X; Wu Q; Chen L; Sun Y; Chen L; Zhang C; Li S; Ma C; Jiang S
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36779704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MXene-Based Soft Humidity-Driven Actuator with High Sensitivity and Fast Response.
    Wu J; Ai W; Long Y; Song K
    ACS Appl Mater Interfaces; 2024 May; 16(21):27650-27656. PubMed ID: 38747462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiresponsive actuators based on modified electrospun films.
    Han L; Xu J; Wang S; Yuan N; Ding J
    RSC Adv; 2018 Mar; 8(19):10302-10309. PubMed ID: 35540461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous self-healing assembly of MXene and graphene oxide enables producing free-standing and self-reparable soft electronics and robots.
    Ma JN; Zhang YL; Liu YQ; Han DD; Mao JW; Zhang JR; Zhao WC; Sun HB
    Sci Bull (Beijing); 2022 Mar; 67(5):501-511. PubMed ID: 36546171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enable Multi-Stimuli-Responsive Biomimetic Actuation with Asymmetric Design of Graphene-Conjugated Conductive Polymer Gradient Film.
    Liu W; Lei Z; Xing W; Xiong J; Zhang Y; Tao P; Shang W; Fu B; Song C; Deng T
    ACS Nano; 2023 Aug; 17(16):16123-16134. PubMed ID: 37565780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gradient Assembly of Polymer Nanospheres and Graphene Oxide Sheets for Dual-Responsive Soft Actuators.
    Gao YY; Zhang YL; Han B; Zhu L; Dong B; Sun HB
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37130-37138. PubMed ID: 31500405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of MXenes in advancing soft robotics.
    Iravani S
    Soft Matter; 2023 Aug; 19(33):6196-6212. PubMed ID: 37566389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks.
    Zhang X; Xue P; Yang X; Valenzuela C; Chen Y; Lv P; Wang Z; Wang L; Xu X
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11834-11841. PubMed ID: 35192332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydopamine-Modified MXene-Integrated Poly(
    Wang X; Xue P; Ma S; Gong Y; Xu X
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49689-49700. PubMed ID: 37823839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Conductive MXene Film Actuator Based on Moisture Gradients.
    Wang J; Liu Y; Cheng Z; Xie Z; Yin L; Wang W; Song Y; Zhang H; Wang Y; Fan Z
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):14029-14033. PubMed ID: 32374487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti
    Hu Y; Yang L; Yan Q; Ji Q; Chang L; Zhang C; Yan J; Wang R; Zhang L; Wu G; Sun J; Zi B; Chen W; Wu Y
    ACS Nano; 2021 Mar; 15(3):5294-5306. PubMed ID: 33650851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color.
    Xue P; Chen Y; Xu Y; Valenzuela C; Zhang X; Bisoyi HK; Yang X; Wang L; Xu X; Li Q
    Nanomicro Lett; 2022 Nov; 15(1):1. PubMed ID: 36441443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable functionalized liquid crystal elastomer fiber soft actuators with multi-stimulus responses and photoelectric conversion.
    Wu D; Zhang Y; Yang H; Wei A; Zhang Y; Mensah A; Yin R; Lv P; Feng Q; Wei Q
    Mater Horiz; 2023 Jul; 10(7):2587-2598. PubMed ID: 37092244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistimulus Responsive Actuator with GO and Carbon Nanotube/PDMS Bilayer Structure for Flexible and Smart Devices.
    Wang W; Xiang C; Zhu Q; Zhong W; Li M; Yan K; Wang D
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27215-27223. PubMed ID: 30036482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-stimuli-responsive programmable biomimetic actuator.
    Dong Y; Wang J; Guo X; Yang S; Ozen MO; Chen P; Liu X; Du W; Xiao F; Demirci U; Liu BF
    Nat Commun; 2019 Sep; 10(1):4087. PubMed ID: 31501430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.