These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38486759)

  • 1. An Arrhythmia classification approach via deep learning using single-lead ECG without QRS wave detection.
    Liu LR; Huang MY; Huang ST; Kung LC; Lee CH; Yao WT; Tsai MF; Hsu CH; Chu YC; Hung FH; Chiu HW
    Heliyon; 2024 Mar; 10(5):e27200. PubMed ID: 38486759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Future Incidences of Cardiac Arrhythmias Using Discrete Heartbeats from Normal Sinus Rhythm ECG Signals via Deep Learning Methods.
    Kim Y; Lee M; Yoon J; Kim Y; Min H; Cho H; Park J; Shin T
    Diagnostics (Basel); 2023 Sep; 13(17):. PubMed ID: 37685387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs.
    Lee H; Shin M
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings.
    Zhang P; Ma C; Sun Y; Fan G; Song F; Feng Y; Zhang G
    Comput Biol Med; 2021 Dec; 139():104880. PubMed ID: 34700255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias].
    Li D; Zhang H; Liu Z; Huang J; Wang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):189-198. PubMed ID: 31016934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atrioventricular Synchronization for Detection of Atrial Fibrillation and Flutter in One to Twelve ECG Leads Using a Dense Neural Network Classifier.
    Jekova I; Christov I; Krasteva V
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explainable artificial intelligence for heart rate variability in ECG signal.
    K S; V S; E A G; K P S
    Healthc Technol Lett; 2020 Dec; 7(6):146-154. PubMed ID: 33425369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
    Yıldırım Ö; Pławiak P; Tan RS; Acharya UR
    Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Extraction of Deep Image Features Using a Convolutional Neural Network (CNN) for Detecting Ventricular Fibrillation and Tachycardia.
    Mjahad A; Saban M; Azarmdel H; Rosado-Muñoz A
    J Imaging; 2023 Sep; 9(9):. PubMed ID: 37754954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification.
    Madan P; Singh V; Singh DP; Diwakar M; Pant B; Kishor A
    Bioengineering (Basel); 2022 Apr; 9(4):. PubMed ID: 35447712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network.
    Panda R; Jain S; Tripathy RK; Acharya UR
    Comput Biol Med; 2020 Sep; 124():103939. PubMed ID: 32750507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Study on Heart Rate Variability Analysis for Atrial Fibrillation Detection in Short Single-Lead ECG Recordings.
    Nguyen A; Ansari S; Hooshmand M; Lin K; Ghanbari H; Gryak J; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():526-529. PubMed ID: 30440450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning Method to Detect Atrial Fibrillation Based on Continuous Wavelet Transform.
    Wu Z; Feng X; Yang C
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1908-1912. PubMed ID: 31946271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG.
    Christov I; Krasteva V; Simova I; Neycheva T; Schmid R
    Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [PECULIARITIES OF CARBOPNEUMPEROPERITONEUM AT LAPAROSCOPIC OPERATION UNDER CONDITIONS OF RHYTHM DISORDERS AND CONDUCTIVITY OF CARDIAC ACTIVITY].
    Vorovskiy O; Shushkovskaya Y; Tedoradze V; Bazyak A
    Georgian Med News; 2020 Apr; (301):7-13. PubMed ID: 32535555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Arrhythmia Classification Model Based on Vision Transformer with Deformable Attention.
    Dong Y; Zhang M; Qiu L; Wang L; Yu Y
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the recording condition on the quality of a single-lead electrocardiogram.
    Hamada S; Sasaki K; Kito H; Tooyama Y; Ihara K; Aoyagi E; Ichimura N; Tohda S; Sasano T
    Heart Vessels; 2022 Jun; 37(6):1010-1026. PubMed ID: 34854951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Strategy for Sliding ECG Analysis during Cardiopulmonary Resuscitation: Influence of the Hands-Off Time on Accuracy.
    Krasteva V; Didon JP; Ménétré S; Jekova I
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Method for Discrimination of Arrhythmias Using Time, Frequency, and Nonlinear Features of Electrocardiogram Signals.
    Hajeb-Mohammadalipour S; Ahmadi M; Shahghadami R; Chon KH
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966276
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.