These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38486786)
1. Near-infrared spectroscopy combined with fuzzy fast pseudoinverse linear discriminant analysis to discriminate mee tea grades. Wu B; Tang W; Zhou J; Jia H; Shen H; Qi Z Heliyon; 2024 Mar; 10(5):e27732. PubMed ID: 38486786 [TBL] [Abstract][Full Text] [Related]
2. Near-Infrared Spectroscopy Combined with Fuzzy Improved Direct Linear Discriminant Analysis for Nondestructive Discrimination of Chrysanthemum Tea Varieties. Zhang J; Wu X; He C; Wu B; Zhang S; Sun J Foods; 2024 May; 13(10):. PubMed ID: 38790739 [TBL] [Abstract][Full Text] [Related]
3. Accurate Classification of Chunmee Tea Grade Using NIR Spectroscopy and Fuzzy Maximum Uncertainty Linear Discriminant Analysis. Wu X; He F; Wu B; Zeng S; He C Foods; 2023 Jan; 12(3):. PubMed ID: 36766070 [TBL] [Abstract][Full Text] [Related]
4. Discrimination of the Red Jujube Varieties Using a Portable NIR Spectrometer and Fuzzy Improved Linear Discriminant Analysis. Qi Z; Wu X; Yang Y; Wu B; Fu H Foods; 2022 Mar; 11(5):. PubMed ID: 35267396 [TBL] [Abstract][Full Text] [Related]
5. Classification of Chinese vinegar varieties using electronic nose and fuzzy Foley-Sammon transformation. Wu XH; Zhu J; Wu B; Huang DP; Sun J; Dai CX J Food Sci Technol; 2020 Apr; 57(4):1310-1319. PubMed ID: 32180627 [TBL] [Abstract][Full Text] [Related]
6. Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near-infrared spectroscopy and evolutionary algorithms. Ren G; Sun Y; Li M; Ning J; Zhang Z J Sci Food Agric; 2020 Aug; 100(10):3950-3959. PubMed ID: 32329077 [TBL] [Abstract][Full Text] [Related]
7. [Discrimination of Tea Varieties by Using Infrared Spectroscopy with a Novel Generalized Noise Clustering]. Wu B; Cui YH; Wu XH; Jia HW; Li M Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2094-7. PubMed ID: 30035891 [TBL] [Abstract][Full Text] [Related]
8. Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands. Wu X; Fang Y; Wu B; Liu M Foods; 2023 Oct; 12(21):. PubMed ID: 37959047 [TBL] [Abstract][Full Text] [Related]
9. [Discrimination of Lettuce Storage Time Using Near Infrared Spectroscopy Based on Generalized Fuzzy K-Harmonic Means Clustering]. Wu XH; Pan MH; Wu B; Ji G; Sun J Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1721-5. PubMed ID: 30052379 [TBL] [Abstract][Full Text] [Related]
10. A Study on Origin Traceability of White Tea (White Peony) Based on Near-Infrared Spectroscopy and Machine Learning Algorithms. Zhang L; Dai H; Zhang J; Zheng Z; Song B; Chen J; Lin G; Chen L; Sun W; Huang Y Foods; 2023 Jan; 12(3):. PubMed ID: 36766027 [TBL] [Abstract][Full Text] [Related]
11. Discrimination of Trichosanthis Fructus from Different Geographical Origins Using Near Infrared Spectroscopy Coupled with Chemometric Techniques. Xu L; Sun W; Wu C; Ma Y; Chao Z Molecules; 2019 Apr; 24(8):. PubMed ID: 31010152 [TBL] [Abstract][Full Text] [Related]
12. Determination of Pork Meat Storage Time Using Near-Infrared Spectroscopy Combined with Fuzzy Clustering Algorithms. Li Q; Wu X; Zheng J; Wu B; Jian H; Sun C; Tang Y Foods; 2022 Jul; 11(14):. PubMed ID: 35885343 [TBL] [Abstract][Full Text] [Related]
13. Several Feature Extraction Methods Combined with Near-Infrared Spectroscopy for Identifying the Geographical Origins of Milk. Wu X; Wang Y; He C; Wu B; Zhang T; Sun J Foods; 2024 Jun; 13(11):. PubMed ID: 38891010 [TBL] [Abstract][Full Text] [Related]
14. Spectral separation degree method for Vis-NIR spectroscopic discriminant analysis of milk powder adulteration. Yuan L; Chen X; Huang Y; Chen J; Pan T Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 301():122975. PubMed ID: 37301030 [TBL] [Abstract][Full Text] [Related]
15. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition. Xu W; Song Q; Li D; Wan X J Agric Food Chem; 2012 Jul; 60(28):7064-70. PubMed ID: 22720840 [TBL] [Abstract][Full Text] [Related]
16. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis]. Yu S; Liu GH; Xia RS; Jiang H Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):51-4. PubMed ID: 27228739 [TBL] [Abstract][Full Text] [Related]
17. Rapid Characterization of Black Tea Taste Quality Using Miniature NIR Spectroscopy and Electronic Tongue Sensors. Ren G; Zhang X; Wu R; Yin L; Hu W; Zhang Z Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671927 [TBL] [Abstract][Full Text] [Related]
18. Study on discrimination of white tea and albino tea based on near-infrared spectroscopy and chemometrics. Chen Y; Deng J; Wang Y; Liu B; Ding J; Mao X; Zhang J; Hu H; Li J J Sci Food Agric; 2014 Mar; 94(5):1026-33. PubMed ID: 23983143 [TBL] [Abstract][Full Text] [Related]
19. High-accuracy classification and origin traceability of peanut kernels based on near-infrared (NIR) spectroscopy using Adaboost - Maximum uncertainty linear discriminant analysis. Zhu R; Wu X; Wu B; Gao J Curr Res Food Sci; 2024; 8():100766. PubMed ID: 38770517 [TBL] [Abstract][Full Text] [Related]
20. Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality. Ren G; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118918. PubMed ID: 32942112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]