These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38486913)

  • 1. Development and testing of the aerial porter exoskeleton.
    Martin WB; Boehler A; Hollander KW; Kinney D; Hitt JK; Kudva J; Sugar TG
    Wearable Technol; 2022; 3():e1. PubMed ID: 38486913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Real-Time Lift Detection Strategy for a Hip Exoskeleton.
    Chen B; Grazi L; Lanotte F; Vitiello N; Crea S
    Front Neurorobot; 2018; 12():17. PubMed ID: 29706881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting.
    Schmalz T; Colienne A; Bywater E; Fritzsche L; Gärtner C; Bellmann M; Reimer S; Ernst M
    IISE Trans Occup Ergon Hum Factors; 2022; 10(1):7-20. PubMed ID: 34763618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures.
    van Sluijs RM; Wehrli M; Brunner A; Lambercy O
    J Biomech; 2023 Mar; 149():111489. PubMed ID: 36806003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and preliminary evaluation of a flexible exoskeleton to assist with lifting.
    Chang SE; Pesek T; Pote TR; Hull J; Geissinger J; Simon AA; Alemi MM; Asbeck AT
    Wearable Technol; 2020; 1():e10. PubMed ID: 39050263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of a new passive back support exoskeleton.
    Koopman AS; Näf M; Baltrusch SJ; Kingma I; Rodriguez-Guerrero C; Babič J; de Looze MP; van Dieën JH
    J Biomech; 2020 May; 105():109795. PubMed ID: 32423541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Passive Back-Support Exoskeleton With a Spring-Cable-Differential for Lifting Assistance.
    Ding S; Reyes FA; Bhattacharya S; Seyram O; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3781-3789. PubMed ID: 37725739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting.
    Baltrusch SJ; van Dieën JH; Koopman AS; Näf MB; Rodriguez-Guerrero C; Babič J; Houdijk H
    Eur J Appl Physiol; 2020 Feb; 120(2):401-412. PubMed ID: 31828480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of Lifting Techniques for Application of A Robotic Hip Exoskeleton.
    Chen B; Lanotte F; Grazi L; Vitiello N; Crea S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a Passive Back Support Exoskeleton when Lifting and Carrying Lumber Boards.
    Novak VD; Song Y; Gorsic M; Dai B
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting.
    Alemi MM; Geissinger J; Simon AA; Chang SE; Asbeck AT
    J Electromyogr Kinesiol; 2019 Aug; 47():25-34. PubMed ID: 31108346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ergonomic Mechanical Design and Assessment of a Waist Assist Exoskeleton for Reducing Lumbar Loads During Lifting Task.
    Yong X; Yan Z; Wang C; Wang C; Li N; Wu X
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31295934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic effects of a passive lift assistive exoskeleton.
    Simon AA; Alemi MM; Asbeck AT
    J Biomech; 2021 May; 120():110317. PubMed ID: 33773297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks.
    Huysamen K; de Looze M; Bosch T; Ortiz J; Toxiri S; O'Sullivan LW
    Appl Ergon; 2018 Apr; 68():125-131. PubMed ID: 29409626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationale, Implementation and Evaluation of Assistive Strategies for an Active Back-Support Exoskeleton.
    Toxiri S; Koopman AS; Lazzaroni M; Ortiz J; Power V; de Looze MP; O'Sullivan L; Caldwell DG
    Front Robot AI; 2018; 5():53. PubMed ID: 33500935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a passive lumbar back exoskeleton during a repetitive lifting task: effects on physiologic parameters and intersubject variability.
    Erezuma UL; Espin A; Torres-Unda J; Esain I; Irazusta J; Rodriguez-Larrad A
    Int J Occup Saf Ergon; 2022 Dec; 28(4):2377-2384. PubMed ID: 34608854
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting.
    Koopman AS; Kingma I; de Looze MP; van Dieën JH
    J Biomech; 2020 Mar; 102():109486. PubMed ID: 31718821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking.
    Baltrusch SJ; van Dieën JH; Bruijn SM; Koopman AS; van Bennekom CAM; Houdijk H
    Ergonomics; 2019 Jul; 62(7):903-916. PubMed ID: 30929608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological Hip Torque Estimation using a Robotic Hip Exoskeleton.
    Molinaro DD; Kang I; Camargo J; Young AJ
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2020; 2020():791-796. PubMed ID: 35499064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.