These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38486928)

  • 1. Innovative Strategies for Photons Management on Ultrathin Silicon Solar Cells.
    Li N; Fratalocchi A
    Glob Chall; 2024 Mar; 8(3):2300306. PubMed ID: 38486928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin (∼30 µm) flexible monolithic perovskite/silicon tandem solar cell.
    Wang X; Zheng J; Ying Z; Li X; Zhang M; Guo X; Su S; Sun J; Yang X; Ye J
    Sci Bull (Beijing); 2024 Jun; 69(12):1887-1894. PubMed ID: 38658235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Resonant Mie Resonator Arrays for Broadband Light Trapping in Ultrathin c-Si Solar Cells.
    Lee N; Xue M; Hong J; van de Groep J; Brongersma ML
    Adv Mater; 2023 Jul; 35(29):e2210941. PubMed ID: 37129216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopatterned Back-Reflector with Engineered Near-Field/Far-Field Light Scattering for Enhanced Light Trapping in Silicon-Based Multijunction Solar Cells.
    Cordaro A; Müller R; Tabernig SW; Tucher N; Schygulla P; Höhn O; Bläsi B; Polman A
    ACS Photonics; 2023 Nov; 10(11):4061-4070. PubMed ID: 38027248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Elam D; Ayon AA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4356-63. PubMed ID: 24568116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light trapping in ultrathin 25  μm exfoliated Si solar cells.
    Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK
    Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.
    Zhang Y; Jia B; Gu M
    Opt Express; 2016 Mar; 24(6):A506-14. PubMed ID: 27136871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells.
    Li X; Mariano M; McMillon-Brown L; Huang JS; Sfeir MY; Reed MA; Jung Y; Taylor AD
    Small; 2017 Dec; 13(48):. PubMed ID: 29125720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression.
    He J; Gao P; Liao M; Yang X; Ying Z; Zhou S; Ye J; Cui Y
    ACS Nano; 2015 Jun; 9(6):6522-31. PubMed ID: 26047260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon enhanced ultrathin Cu
    Jamil S; Saha U; Alam MK
    Nanoscale Adv; 2023 May; 5(11):2887-2896. PubMed ID: 37260479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.
    Lee SM; Biswas R; Li W; Kang D; Chan L; Yoon J
    ACS Nano; 2014 Oct; 8(10):10507-16. PubMed ID: 25272244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling free-carrier absorption in ultrathin III-V solar cells with light management.
    D'Rozario JR; Polly SJ; Nelson GT; Wilt D; Hubbard SM
    Opt Express; 2022 Feb; 30(5):7096-7109. PubMed ID: 35299480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides.
    Lee SM; Dhar P; Chen H; Montenegro A; Liaw L; Kang D; Gai B; Benderskii AV; Yoon J
    ACS Nano; 2017 Apr; 11(4):4077-4085. PubMed ID: 28402101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post passivation light trapping back contacts for silicon heterojunction solar cells.
    Smeets M; Bittkau K; Lentz F; Richter A; Ding K; Carius R; Rau U; Paetzold UW
    Nanoscale; 2016 Nov; 8(44):18726-18733. PubMed ID: 27787533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon nanodisk array design for effective light trapping in ultrathin c-Si.
    Kim I; Jeong DS; Lee WS; Kim WM; Lee TS; Lee DK; Song JH; Kim JK; Lee KS
    Opt Express; 2014 Oct; 22 Suppl 6():A1431-9. PubMed ID: 25607300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopyramid structure for ultrathin c-Si tandem solar cells.
    Li G; Li H; Ho JY; Wong M; Kwok HS
    Nano Lett; 2014 May; 14(5):2563-8. PubMed ID: 24730470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays.
    Liu D; Yang D; Gao Y; Ma J; Long R; Wang C; Xiong Y
    Angew Chem Int Ed Engl; 2016 Mar; 55(14):4577-81. PubMed ID: 26929103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.