These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38487236)
1. What defines electrophilicity in carbonyl compounds. Bickelhaupt FM; Fernández I Chem Sci; 2024 Mar; 15(11):3980-3987. PubMed ID: 38487236 [TBL] [Abstract][Full Text] [Related]
2. An n→π* interaction reduces the electrophilicity of the acceptor carbonyl group. Choudhary A; Fry CG; Kamer KJ; Raines RT Chem Commun (Camb); 2013 Sep; 49(74):8166-8. PubMed ID: 23928794 [TBL] [Abstract][Full Text] [Related]
3. Cycloaddition Reactivities Analyzed by Energy Decomposition Analyses and the Frontier Molecular Orbital Model. Sengupta A; Li B; Svatunek D; Liu F; Houk KN Acc Chem Res; 2022 Sep; 55(17):2467-2479. PubMed ID: 36007242 [TBL] [Abstract][Full Text] [Related]
4. Koopmans-like approximation in the Kohn-Sham method and the impact of the frozen core approximation on the computation of the reactivity parameters of the density functional theory. Vargas R; Garza J; Cedillo A J Phys Chem A; 2005 Oct; 109(39):8880-92. PubMed ID: 16834292 [TBL] [Abstract][Full Text] [Related]
5. The Nature of Nonclassical Carbonyl Ligands Explained by Kohn-Sham Molecular Orbital Theory. van der Lubbe SCC; Vermeeren P; Fonseca Guerra C; Bickelhaupt FM Chemistry; 2020 Dec; 26(67):15690-15699. PubMed ID: 33045113 [TBL] [Abstract][Full Text] [Related]
6. Quantum chemical study of Lewis acid catalyzed allylboration of aldehydes. Sakata K; Fujimoto H J Am Chem Soc; 2008 Sep; 130(37):12519-26. PubMed ID: 18712868 [TBL] [Abstract][Full Text] [Related]
7. On the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept. da Silva RR; Ramalho TC; Santos JM; Figueroa-Villar JD J Phys Chem A; 2006 Jan; 110(3):1031-40. PubMed ID: 16420004 [TBL] [Abstract][Full Text] [Related]
8. Insight from first principles into the nature of the bonding between water molecules and 4d metal surfaces. Carrasco J; Michaelides A; Scheffler M J Chem Phys; 2009 May; 130(18):184707. PubMed ID: 19449943 [TBL] [Abstract][Full Text] [Related]
9. On Atoms-in-Molecules Energies from Kohn-Sham Calculations. Tognetti V; Joubert L Chemphyschem; 2017 Oct; 18(19):2675-2687. PubMed ID: 28675569 [TBL] [Abstract][Full Text] [Related]
10. Connection between nuclear and electronic Fukui functions beyond frontier molecular orbitals. Oller J; Jaque P J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127388 [TBL] [Abstract][Full Text] [Related]
11. A Quantitative Molecular Orbital Perspective of the Chalcogen Bond. de Azevedo Santos L; van der Lubbe SCC; Hamlin TA; Ramalho TC; Matthias Bickelhaupt F ChemistryOpen; 2021 Apr; 10(4):391-401. PubMed ID: 33594829 [TBL] [Abstract][Full Text] [Related]
12. Orbital relaxation effects on Kohn-Sham frontier orbital energies in density functional theory. Zhang D; Zheng X; Li C; Yang W J Chem Phys; 2015 Apr; 142(15):154113. PubMed ID: 25903872 [TBL] [Abstract][Full Text] [Related]
13. Activation Strain Analysis of S Kubelka J; Bickelhaupt FM J Phys Chem A; 2017 Feb; 121(4):885-891. PubMed ID: 28045531 [TBL] [Abstract][Full Text] [Related]
14. Ambident Nucleophilic Substitution: Understanding Non-HSAB Behavior through Activation Strain and Conceptual DFT Analyses. Bettens T; Alonso M; De Proft F; Hamlin TA; Bickelhaupt FM Chemistry; 2020 Mar; 26(17):3884-3893. PubMed ID: 31957943 [TBL] [Abstract][Full Text] [Related]
15. Global and local electrophilicity patterns of diazonium ions and their reactivity toward pi-nucleophiles. Pérez P J Org Chem; 2003 Jul; 68(15):5886-9. PubMed ID: 12868922 [TBL] [Abstract][Full Text] [Related]
16. The Pauli Repulsion-Lowering Concept in Catalysis. Hamlin TA; Bickelhaupt FM; Fernández I Acc Chem Res; 2021 Apr; 54(8):1972-1981. PubMed ID: 33759502 [TBL] [Abstract][Full Text] [Related]
17. Rationalizing the Substituent Effects in Diels-Alder Reactions of Triazolinediones with Anthracene. Hernández-Mancera JP; Rojas-Valencia N; Núñez-Zarur F J Phys Chem A; 2022 Sep; 126(38):6657-6667. PubMed ID: 36122186 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Reaction Processes On the Basis of the Evolution of Dynamic Orbital Forces: Examples of Cycloadditions, S Chaquin P; Fuster F Chemphyschem; 2017 Oct; 18(20):2873-2880. PubMed ID: 28745451 [TBL] [Abstract][Full Text] [Related]
19. Electron-withdrawing substituents decrease the electrophilicity of the carbonyl carbon. An investigation with the aid of (13)C NMR chemical shifts, nu(C[double bond]O) frequency values, charge densities, and isodesmic reactions to interpret substituent effects on reactivity. Neuvonen H; Neuvonen K; Koch A; Kleinpeter E; Pasanen P J Org Chem; 2002 Oct; 67(20):6995-7003. PubMed ID: 12353992 [TBL] [Abstract][Full Text] [Related]
20. Orbital signatures as a descriptor of regioselectivity and chemical reactivity: the role of the frontier orbitals on 1,3-dipolar cycloadditions. La Porta FA; Ramalho TC; Santiago RT; Rocha MV; da Cunha EF J Phys Chem A; 2011 Feb; 115(5):824-33. PubMed ID: 21222451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]