These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38487252)

  • 1. ACPPfel: Explainable deep ensemble learning for anticancer peptides prediction based on feature optimization.
    Liu M; Wu T; Li X; Zhu Y; Chen S; Huang J; Zhou F; Liu H
    Front Genet; 2024; 15():1352504. PubMed ID: 38487252
    [No Abstract]   [Full Text] [Related]  

  • 2. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides.
    Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q
    Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion.
    Cao R; Wang M; Bin Y; Zheng C
    PeerJ; 2021; 9():e11906. PubMed ID: 34414035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation.
    Arif M; Musleh S; Fida H; Alam T
    Sci Rep; 2024 Jul; 14(1):16992. PubMed ID: 39043738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides.
    Wan Y; Wang Z; Lee TY
    BMC Bioinformatics; 2021 May; 22(1):286. PubMed ID: 34051755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. xDeep-AcPEP: Deep Learning Method for Anticancer Peptide Activity Prediction Based on Convolutional Neural Network and Multitask Learning.
    Chen J; Cheong HH; Siu SWI
    J Chem Inf Model; 2021 Aug; 61(8):3789-3803. PubMed ID: 34327990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating Traditional Machine Learning and Deep Learning for Precision Screening of Anticancer Peptides: A Novel Approach for Efficient Drug Discovery.
    Xu M; Pang J; Ye Y; Zhang Z
    ACS Omega; 2024 Apr; 9(14):16820-16831. PubMed ID: 38617603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EnDL-HemoLyt: Ensemble Deep Learning-based Tool for Identifying Therapeutic Peptides with Low Hemolytic Activity.
    Sharma R; Shrivastava S; Singh SK; Kumar A; Singh AK; Saxena S
    IEEE J Biomed Health Inform; 2023 Apr; PP():. PubMed ID: 37018101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACPScanner: Prediction of Anticancer Peptides by Integrated Machine Learning Methodologies.
    Zhong G; Deng L
    J Chem Inf Model; 2024 Feb; 64(3):1092-1104. PubMed ID: 38277774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information.
    Sun M; Yang S; Hu X; Zhou Y
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACPred-BMF: bidirectional LSTM with multiple feature representations for explainable anticancer peptide prediction.
    Han B; Zhao N; Zeng C; Mu Z; Gong X
    Sci Rep; 2022 Dec; 12(1):21915. PubMed ID: 36535969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AACFlow: an end-to-end model based on attention augmented convolutional neural network and flow-attention mechanism for identification of anticancer peptides.
    Zhang S; Zhao Y; Liang Y
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38452348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm.
    Yu L; Jing R; Liu F; Luo J; Li Y
    Mol Ther Nucleic Acids; 2020 Dec; 22():862-870. PubMed ID: 33230481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides.
    Zhao Y; Wang S; Fei W; Feng Y; Shen L; Yang X; Wang M; Wu M
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating the Discovery of Anticancer Peptides through Deep Forest Architecture with Deep Graphical Representation.
    Yao L; Li W; Zhang Y; Deng J; Pang Y; Huang Y; Chung CR; Yu J; Chiang YC; Lee TY
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides.
    Rao B; Zhou C; Zhang G; Su R; Wei L
    Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.