These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38487362)

  • 1. Evolutionary rescue from climate change: male indirect genetic effects on lay-dates and their consequences for population persistence.
    Murray M; Wright J; Araya-Ajoy YG
    Evol Lett; 2024 Feb; 8(1):137-148. PubMed ID: 38487362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows.
    Germain RR; Wolak ME; Arcese P; Losdat S; Reid JM
    J Anim Ecol; 2016 Nov; 85(6):1613-1624. PubMed ID: 27448623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do phenology, plasticity, and evolution determine the fitness consequences of climate change for montane butterflies?
    Kingsolver JG; Buckley LB
    Evol Appl; 2018 Sep; 11(8):1231-1244. PubMed ID: 30151036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity in female timing may explain earlier breeding in a North American songbird.
    Kimmitt AA; Becker DJ; Diller SN; Gerlach NM; Rosvall KA; Ketterson ED
    J Anim Ecol; 2022 Oct; 91(10):1988-1998. PubMed ID: 35819093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change?
    Gienapp P; Lof M; Reed TE; McNamara J; Verhulst S; Visser ME
    Philos Trans R Soc Lond B Biol Sci; 2013 Jan; 368(1610):20120289. PubMed ID: 23209174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird.
    Shutt JD; Cabello IB; Keogan K; Leech DI; Samplonius JM; Whittle L; Burgess MD; Phillimore AB
    Proc Biol Sci; 2019 Aug; 286(1908):20190952. PubMed ID: 31409248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How frequency-dependent selection affects population fitness, maladaptation and evolutionary rescue.
    Svensson EI; Connallon T
    Evol Appl; 2019 Aug; 12(7):1243-1258. PubMed ID: 31417612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Where is the optimum? Predicting the variation of selection along climatic gradients and the adaptive value of plasticity. A case study on tree phenology.
    Gauzere J; Teuf B; Davi H; Chevin LM; Caignard T; Leys B; Delzon S; Ronce O; Chuine I
    Evol Lett; 2020 Apr; 4(2):109-123. PubMed ID: 32313687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenological indices of avian reproduction: cryptic shifts and prediction across large spatial and temporal scales.
    Gullett P; Hatchwell BJ; Robinson RA; Evans KL
    Ecol Evol; 2013 Jul; 3(7):1864-77. PubMed ID: 23919135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex-Differences in Phenology: A Tinbergian Perspective.
    Williams CT; Chmura HE; Deal CK; Wilsterman K
    Integr Comp Biol; 2022 Oct; 62(4):980-997. PubMed ID: 35587379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can threatened species adapt in a restored habitat? No expected evolutionary response in lay date for the New Zealand hihi.
    de Villemereuil P; Rutschmann A; Ewen JG; Santure AW; Brekke P
    Evol Appl; 2019 Mar; 12(3):482-497. PubMed ID: 30828369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae).
    Pearce-Higgins JW; Yalden DW; Whittingham MJ
    Oecologia; 2005 Apr; 143(3):470-6. PubMed ID: 15685442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date.
    Phillimore AB; Leech DI; Pearce-Higgins JW; Hadfield JD
    Glob Chang Biol; 2016 Oct; 22(10):3259-72. PubMed ID: 27173755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sexual dimorphism in phenotypic plasticity and persistence under environmental change: An extension of theory and meta-analysis of current data.
    Hangartner S; Sgrò CM; Connallon T; Booksmythe I
    Ecol Lett; 2022 Jun; 25(6):1550-1565. PubMed ID: 35334155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of reproductive phenology to climate change with ecological feedback via dominance hierarchies.
    Johansson J; Smith HG; Jonzén N
    J Anim Ecol; 2014 Mar; 83(2):440-9. PubMed ID: 24237260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No evidence for fitness signatures consistent with increasing trophic mismatch over 30 years in a population of European shag Phalacrocorax aristotelis.
    Keogan K; Lewis S; Howells RJ; Newell MA; Harris MP; Burthe S; Phillips RA; Wanless S; Phillimore AB; Daunt F
    J Anim Ecol; 2021 Feb; 90(2):432-446. PubMed ID: 33070317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current spring warming as a driver of selection on reproductive timing in a wild passerine.
    Marrot P; Charmantier A; Blondel J; Garant D
    J Anim Ecol; 2018 May; 87(3):754-764. PubMed ID: 29337354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sexual selection, phenotypic plasticity and female reproductive output.
    Fox RJ; Fromhage L; Jennions MD
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180184. PubMed ID: 30966965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change affects bird nesting phenology: Comparing contemporary field and historical museum nesting records.
    Bates JM; Fidino M; Nowak-Boyd L; Strausberger BM; Schmidt KA; Whelan CJ
    J Anim Ecol; 2023 Feb; 92(2):263-272. PubMed ID: 35332554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assortative mating can help adaptation of flowering time to a changing climate: Insights from a polygenic model.
    Godineau C; Ronce O; Devaux C
    J Evol Biol; 2022 Apr; 35(4):491-508. PubMed ID: 33794053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.