These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38487978)

  • 1. Investigation of the lattice thermal transport properties of Janus XClO (X = Cr, Ir) monolayers by first-principles calculations.
    Gao P; Chen X; Liu Z; Li J; Wang N
    Phys Chem Chem Phys; 2024 Mar; 26(13):10136-10143. PubMed ID: 38487978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Janus 2H-MXTe (M = Zr, Hf; X = S, Se) monolayers with outstanding thermoelectric properties and low lattice thermal conductivities.
    Lin YQ; Yang Q; Wang ZQ; Geng HY; Cheng Y
    Phys Chem Chem Phys; 2023 Nov; 25(45):31312-31325. PubMed ID: 37955953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat transport properties of novel carbon monolayer (net-Y): a comparative study with graphene.
    Gao P; Chen X; Wang N; Li J; Tang H; Liu Z; Zhai F
    Phys Chem Chem Phys; 2023 Feb; 25(6):4915-4922. PubMed ID: 36722382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Thermoelectric Performance in Two-Dimensional Janus Monolayer Material WS-X (
    Patel A; Singh D; Sonvane Y; Thakor PB; Ahuja R
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46212-46219. PubMed ID: 32931245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential thermoelectric materials: first-principles prediction of low lattice thermal conductivity of two-dimensional (2D) orthogonal ScX
    Bi S; Sun Z; Yuan K; Chang Z; Zhang X; Gao Y; Tang D
    Phys Chem Chem Phys; 2021 Oct; 23(41):23718-23729. PubMed ID: 34642727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing phonon thermal transport in 2H-CrX
    Tang S; Wan D; Bai S; Fu S; Wang X; Li X; Zhang J
    Phys Chem Chem Phys; 2023 Aug; 25(33):22401-22414. PubMed ID: 37581216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh thermoelectric performance of Janus α-STe
    Liu G; Guo A; Cao F; Ju W; Wang Z; Wang H; Li GL; Gao Z
    Phys Chem Chem Phys; 2022 Nov; 24(46):28295-28305. PubMed ID: 36382798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower thermal conductivity of body centered cubic carbon (C14): a comparative study with diamond.
    Gao P; Chen X; Li J; Wang N; Tang H; Meng X; Liu Z; Guo D; Tan Y; Zhu G; Zhai F
    Phys Chem Chem Phys; 2022 Oct; 24(38):23817-23824. PubMed ID: 36164942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical and thermoelectric properties of new Janus ZnMN
    Ali B; Idrees M; Alrebdi TA; Amin B; Alam Q
    Nanoscale Adv; 2024 Jan; 6(2):680-689. PubMed ID: 38235097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice thermal conductivity of Janus MoSSe and WSSe monolayers.
    Qin H; Ren K; Zhang G; Dai Y; Zhang G
    Phys Chem Chem Phys; 2022 Aug; 24(34):20437-20444. PubMed ID: 35983909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical, electronic, optical and thermoelectric properties of two-dimensional honeycomb-like of XSb (X = Si, Ge, Sn) monolayers: a first-principles calculations.
    Bafekry A; Shojai F; Hoat DM; Shahrokhi M; Ghergherehchi M; Nguyen C
    RSC Adv; 2020 Aug; 10(51):30398-30405. PubMed ID: 35516017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural, electronic, and transport properties of Janus GaIn
    Vu TV; Linh TPT; Phuc HV; Duque CA; Kartamyshev AI; Hieu NN
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34670205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon transport in Janus monolayer siblings: a comparison of 1T and 2H-ISbTe.
    Chu VH; Le TH; Pham TT; Nguyen DL
    RSC Adv; 2023 Jan; 13(7):4202-4210. PubMed ID: 36760311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-cost pentagonal NiX
    Tang S; Bai S; Wu M; Luo D; Zhang J; Sun W; Yang S
    Phys Chem Chem Phys; 2022 Feb; 24(8):5185-5198. PubMed ID: 35166736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong anisotropy of Sc
    Song X; Chen X; Wang G; Zhou L; Yang H; Li X; Yang H; Shen Y; Luo Y; Wang N
    Phys Chem Chem Phys; 2023 Sep; 25(36):24332-24341. PubMed ID: 37670676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KAgX (X = S, Se): High-Performance Layered Thermoelectric Materials for Medium-Temperature Applications.
    Zhu XL; Yang H; Zhou WX; Wang B; Xu N; Xie G
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36102-36109. PubMed ID: 32666784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and thermoelectric properties of semiconducting Bi
    Cao SH; Zhang T; Hu CE; Chen XR; Geng HY
    Phys Chem Chem Phys; 2022 Nov; 24(43):26753-26763. PubMed ID: 36314268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Prediction of the Monolayer Hf
    Fan Q; Yang J; Wang N
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Thermal Stability of Janus Monolayers SnXY (X, Y = O, S, Se): Ab-Initio Molecular Dynamics and Beyond.
    Luo Y; Han S; Hu R; Yuan H; Jiao W; Liu H
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thermoelectric properties of α-XP (X = Sb and Bi) monolayers from first-principles calculations.
    Liu X; Zhang D; Chen Y; Wang H; Wang H; Ni Y
    Phys Chem Chem Phys; 2021 Nov; 23(43):24598-24606. PubMed ID: 34723296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.