These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38488053)
1. Exploring the synergistic effect of chromium (Cr) tolerant Komal ; Shabaan M; Ali Q; Asghar HN; Zahir ZA; Yousaf K; Aslam N; Zulfiqar U; Ejaz M; Alwahibi MS; Ali MA Int J Phytoremediation; 2024; 26(9):1474-1485. PubMed ID: 38488053 [TBL] [Abstract][Full Text] [Related]
2. Combined application of zinc oxide and iron nanoparticles enhanced Red Sails lettuce growth and antioxidants enzymes activities while reducing the chromium uptake by plants grown in a Cr-contaminated soil. Sameer A; Rabia S; Khan AAA; Zaman QU; Hussain A Int J Phytoremediation; 2024 Sep; 26(11):1728-1740. PubMed ID: 38745404 [TBL] [Abstract][Full Text] [Related]
3. The influence of association of plant growth-promoting rhizobacteria and zero-valent iron nanoparticles on removal of antimony from soil by Trifolium repens. Daryabeigi Zand A; Tabrizi AM; Heir AV Environ Sci Pollut Res Int; 2020 Dec; 27(34):42815-42829. PubMed ID: 32720026 [TBL] [Abstract][Full Text] [Related]
4. Remediation of Cr(VI)-Contaminated Soil by Nano-Zero-Valent Iron in Combination with Biochar or Humic Acid and the Consequences for Plant Performance. Sun Y; Zheng F; Wang W; Zhang S; Wang F Toxics; 2020 Apr; 8(2):. PubMed ID: 32260118 [TBL] [Abstract][Full Text] [Related]
5. Synergistic impact of two autochthonous saprobic fungi ( Nazir A; Sarfraz W; Allah D; Khalid N; Farid M; Shafiq M; Bareen FE; Rizvi ZF; Naeem N Int J Phytoremediation; 2023; 25(11):1488-1500. PubMed ID: 36633455 [TBL] [Abstract][Full Text] [Related]
6. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
8. Synergistic application of Pseudomonas strains and compost mitigates lead (Pb) stress in sunflower (Helianthus annuus L.) via improved nutrient uptake, antioxidant defense and physiology. Ayub A; Shabaan M; Malik M; Asghar HN; Zulfiqar U; Ejaz M; Alarjani KM; Al Farraj DA Ecotoxicol Environ Saf; 2024 Apr; 274():116194. PubMed ID: 38479312 [TBL] [Abstract][Full Text] [Related]
9. Role of iron-lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater. Zaheer IE; Ali S; Saleem MH; Imran M; Alnusairi GSH; Alharbi BM; Riaz M; Abbas Z; Rizwan M; Soliman MH Plant Physiol Biochem; 2020 Oct; 155():70-84. PubMed ID: 32745932 [TBL] [Abstract][Full Text] [Related]
10. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Saif S; Khan MS Environ Monit Assess; 2018 Apr; 190(5):290. PubMed ID: 29666936 [TBL] [Abstract][Full Text] [Related]
11. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils. Ullah S; Liu Q; Wang S; Jan AU; Sharif HMA; Ditta A; Wang G; Cheng H Sci Total Environ; 2023 Nov; 899():165726. PubMed ID: 37495153 [TBL] [Abstract][Full Text] [Related]
12. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Farid M; Ali S; Rizwan M; Ali Q; Abbas F; Bukhari SAH; Saeed R; Wu L Ecotoxicol Environ Saf; 2017 Nov; 145():90-102. PubMed ID: 28710950 [TBL] [Abstract][Full Text] [Related]
13. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. Mokarram-Kashtiban S; Hosseini SM; Tabari Kouchaksaraei M; Younesi H Environ Sci Pollut Res Int; 2019 Apr; 26(11):10776-10789. PubMed ID: 30778927 [TBL] [Abstract][Full Text] [Related]
14. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr Bruno LB; Karthik C; Ma Y; Kadirvelu K; Freitas H; Rajkumar M Chemosphere; 2020 Apr; 244():125521. PubMed ID: 31812764 [TBL] [Abstract][Full Text] [Related]
15. Assisted phytoremediation of chromium spiked soils by Sesbania Sesban in association with Bacillus xiamenensis PM14: A biochemical analysis. Din BU; Amna ; Rafique M; Javed MT; Kamran MA; Mehmood S; Khan M; Sultan T; Hussain Munis MF; Chaudhary HJ Plant Physiol Biochem; 2020 Jan; 146():249-258. PubMed ID: 31765956 [TBL] [Abstract][Full Text] [Related]
16. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Islam F; Yasmeen T; Ali Q; Ali S; Arif MS; Hussain S; Rizvi H Ecotoxicol Environ Saf; 2014 Jun; 104():285-93. PubMed ID: 24726941 [TBL] [Abstract][Full Text] [Related]
17. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Ndeddy Aka RJ; Babalola OO Int J Phytoremediation; 2016; 18(2):200-9. PubMed ID: 26503637 [TBL] [Abstract][Full Text] [Related]
18. The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.). Bahadur A; Ahmad R; Afzal A; Feng H; Suthar V; Batool A; Khan A; Mahmood-Ul-Hassan M Chemosphere; 2017 Jul; 179():112-119. PubMed ID: 28364646 [TBL] [Abstract][Full Text] [Related]
19. Role of Akhtar N; Ilyas N; Yasmin H; Sayyed RZ; Hasnain Z; A Elsayed E; El Enshasy HA Molecules; 2021 Mar; 26(6):. PubMed ID: 33809305 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the phytoremediation potential of dominant plant species growing in a chromium salt-producing factory wasteland, China. Yan X; Wang J; Song H; Peng Y; Zuo S; Gao T; Duan X; Qin D; Dong J Environ Sci Pollut Res Int; 2020 Mar; 27(7):7657-7671. PubMed ID: 31889268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]