These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38488522)

  • 21. New Insights and Predictions into Complex Homogeneous Reactions Enabled by Computational Chemistry in Synergy with Experiments: Isotopes and Mechanisms.
    Lan J; Li X; Yang Y; Zhang X; Chung LW
    Acc Chem Res; 2022 Apr; 55(8):1109-1123. PubMed ID: 35385649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental and theoretical investigation of oxidative methane activation on Pd-Pt catalysts.
    Qi W; Huang Z; Chen Z; Fu L; Zhang Z
    RSC Adv; 2019 Apr; 9(20):11385-11395. PubMed ID: 35520245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen Sulfide Induced Carbon Dioxide Activation by Metal-Free Dual Catalysis.
    Kumar M; Francisco JS
    Chemistry; 2016 Mar; 22(13):4359-63. PubMed ID: 26781129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane.
    Khairudin NF; Mohammadi M; Mohamed AR
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29157-29176. PubMed ID: 33550559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genesis of Active Pt/CeO
    Das S; Anjum U; Lim KH; He Q; Hoffman AS; Bare SR; Kozlov SM; Gates BC; Kawi S
    Small; 2023 Jun; 19(26):e2207272. PubMed ID: 36942900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming].
    Ji HB; Xu JH; Xie JF; Chen QL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1246-50. PubMed ID: 18800697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bimetallic-Derived Catalytic Structures for CO
    Xie Z; Chen JG
    Acc Chem Res; 2023 Sep; 56(18):2447-2458. PubMed ID: 37647142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics and mechanisms of H
    Tian G; Xi J; Yeung M; Ren G
    Sci Total Environ; 2020 Jul; 724():137977. PubMed ID: 32247972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation.
    Zhou H; Liu T; Zhao X; Zhao Y; Lv H; Fang S; Wang X; Zhou F; Xu Q; Xu J; Xiong C; Xue Z; Wang K; Cheong WC; Xi W; Gu L; Yao T; Wei S; Hong X; Luo J; Li Y; Wu Y
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18388-18393. PubMed ID: 31692199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methane Activation by Gas Phase Atomic Clusters.
    Zhao YX; Li ZY; Yang Y; He SG
    Acc Chem Res; 2018 Nov; 51(11):2603-2610. PubMed ID: 30289247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ab initio thermodynamics examination of sulfur species present on Rh, Ni, and binary Rh-Ni surfaces under steam reforming reaction conditions.
    Lee K; Song C; Janik MJ
    Langmuir; 2012 Apr; 28(13):5660-8. PubMed ID: 22385258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of prebiochemical compounds in models of the primitive earth's atmosphere. II: CH4 - H2S atmospheres.
    Raulin F; Toupance G
    Orig Life; 1975; 6(1-2):91-7. PubMed ID: 1153192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Active Sites over Metal-Free Carbon Catalysts for Flue Gas Desulfurization.
    Yuan J; Chen J; Wang Z; Yin R; Zhu X; Yang K; Peng Y; Li J
    Environ Sci Technol; 2023 Feb; 57(6):2575-2583. PubMed ID: 36722821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning methane decomposition on stepped Ni surface: The role of subsurface atoms in catalyst design.
    Arevalo RL; Aspera SM; Escaño MCS; Nakanishi H; Kasai H
    Sci Rep; 2017 Oct; 7(1):13963. PubMed ID: 29070850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficiently Selective Oxidation of H
    Peng WL; Kan X; Chen W; Mi J; Zhang G; Xiao Y; Liu W; Liu F; Zheng A
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34124-34133. PubMed ID: 34256569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of the Comproportionation Reaction in SO
    Sun X; Huang W; Jia X; Liu Z; Feng X; Xu H; Qu Z; Yan N
    Environ Sci Technol; 2024 Jan; 58(1):960-969. PubMed ID: 38150269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review on sensitivity of operating parameters on biogas catalysts for selective oxidation of Hydrogen Sulfide to elemental sulfur.
    Prasertcharoensuk P; Promtongkaew A; Tawatchai M; Marquez V; Jongsomjit B; Tahir M; Praserthdam S; Praserthdam P
    Chemosphere; 2022 Aug; 301():134579. PubMed ID: 35413367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel study of methane-rich gas reforming to syngas and its kinetics over semicoke catalyst.
    Zhang G; Su A; Qu J; Du Y
    ScientificWorldJournal; 2014; 2014():707294. PubMed ID: 24959620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Promoting Dry Reforming of Methane Catalysed by Atomically-Dispersed Ni over Ceria-Upgraded Boron Nitride.
    Li X; Phornphimon M; Zhang X; Deng J; Zhang D
    Chem Asian J; 2022 May; 17(9):e202101428. PubMed ID: 35246955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.
    Sun M; Sun W; Barlaz MA
    Sci Total Environ; 2016 May; 551-552():23-31. PubMed ID: 26874757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.