These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38489006)

  • 21. Structure-function analysis of yeast RNA debranching enzyme (Dbr1), a manganese-dependent phosphodiesterase.
    Khalid MF; Damha MJ; Shuman S; Schwer B
    Nucleic Acids Res; 2005; 33(19):6349-60. PubMed ID: 16275784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Arabidopsis thaliana ACT4/ACT12 actin gene subclass is strongly expressed throughout pollen development.
    Huang S; An YQ; McDowell JM; McKinney EC; Meagher RB
    Plant J; 1996 Aug; 10(2):189-202. PubMed ID: 8771777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Arabidopsis RNA lariat debranching enzyme is essential for embryogenesis.
    Wang H; Hill K; Perry SE
    J Biol Chem; 2004 Jan; 279(2):1468-73. PubMed ID: 14570879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circular RNAs Repertoire and Expression Profile during
    Babaei S; Singh MB; Bhalla PL
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global Co-transcriptional Splicing in Arabidopsis and the Correlation with Splicing Regulation in Mature RNAs.
    Li S; Wang Y; Zhao Y; Zhao X; Chen X; Gong Z
    Mol Plant; 2020 Feb; 13(2):266-277. PubMed ID: 31759129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced microRNA accumulation through stemloop-adjacent introns.
    Schwab R; Speth C; Laubinger S; Voinnet O
    EMBO Rep; 2013 Jul; 14(7):615-21. PubMed ID: 23661080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of human RNA lariat debranching enzyme Dbr1 by binding protein TTDN1 occurs though an intrinsically disordered C-terminal domain.
    Clark NE; Katolik A; Gallant P; Welch A; Murphy E; Buerer L; Schorl C; Naik N; Naik MT; Holloway SP; Cano K; Weintraub ST; Howard KM; Hart PJ; Jogl G; Damha MJ; Fairbrother WG
    J Biol Chem; 2023 Sep; 299(9):105100. PubMed ID: 37507019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reverse self-splicing of group II intron RNAs in vitro.
    Augustin S; Müller MW; Schweyen RJ
    Nature; 1990 Jan; 343(6256):383-6. PubMed ID: 1689013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda).
    Quinn CR; Iriyama R; Fernando DD
    Plant Reprod; 2014 Jun; 27(2):69-78. PubMed ID: 24664256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational Changes in the 5' End of the HIV-1 Genome Dependent on the Debranching Enzyme DBR1 during Early Stages of Infection.
    Galvis AE; Fisher HE; Fan H; Camerini D
    J Virol; 2017 Dec; 91(23):. PubMed ID: 28931690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNA activity in the Arabidopsis male germline.
    Borges F; Pereira PA; Slotkin RK; Martienssen RA; Becker JD
    J Exp Bot; 2011 Mar; 62(5):1611-20. PubMed ID: 21357774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short intron-derived ncRNAs.
    Hubé F; Ulveling D; Sureau A; Forveille S; Francastel C
    Nucleic Acids Res; 2017 May; 45(8):4768-4781. PubMed ID: 28053119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis.
    Yang X; Zhang H; Li L
    Plant J; 2012 May; 70(3):421-31. PubMed ID: 22247970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intron turnover is essential to the development and pathogenicity of the plant pathogenic fungus Fusarium graminearum.
    Choi Y; Lee HH; Park J; Kim S; Choi S; Moon H; Shin J; Kim JE; Choi GJ; Seo YS; Son H
    Commun Biol; 2022 Oct; 5(1):1129. PubMed ID: 36289323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation.
    Nam K; Lee G; Trambley J; Devine SE; Boeke JD
    Mol Cell Biol; 1997 Feb; 17(2):809-18. PubMed ID: 9001235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The miRNome function transitions from regulating developmental genes to transposable elements during pollen maturation.
    Oliver C; Annacondia ML; Wang Z; Jullien PE; Slotkin RK; Köhler C; Martinez G
    Plant Cell; 2022 Feb; 34(2):784-801. PubMed ID: 34755870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq.
    Bitton DA; Rallis C; Jeffares DC; Smith GC; Chen YY; Codlin S; Marguerat S; Bähler J
    Genome Res; 2014 Jul; 24(7):1169-79. PubMed ID: 24709818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From the comparative study of a circRNA originating from an mammalian ATXN2L intron to understanding the genesis of intron lariat-derived circRNAs.
    Robic A; Cerutti C; Demars J; Kühn C
    Biochim Biophys Acta Gene Regul Mech; 2022 May; 1865(4):194815. PubMed ID: 35513260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Splicing of group II introns in spinach chloroplasts (in vivo): analysis of lariat formation.
    Kim JK; Hollingsworth MJ
    Curr Genet; 1993 Feb; 23(2):175-80. PubMed ID: 7679329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Target mimicry provides a new mechanism for regulation of microRNA activity.
    Franco-Zorrilla JM; Valli A; Todesco M; Mateos I; Puga MI; Rubio-Somoza I; Leyva A; Weigel D; García JA; Paz-Ares J
    Nat Genet; 2007 Aug; 39(8):1033-7. PubMed ID: 17643101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.