BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38489238)

  • 1. Organization of the human cerebral cortex estimated within individuals: networks, global topography, and function.
    Du J; DiNicola LM; Angeli PA; Saadon-Grosman N; Sun W; Kaiser S; Ladopoulou J; Xue A; Yeo BTT; Eldaief MC; Buckner RL
    J Neurophysiol; 2024 Jun; 131(6):1014-1082. PubMed ID: 38489238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Within-Individual Organization of the Human Cerebral Cortex: Networks, Global Topography, and Function.
    Du J; DiNicola LM; Angeli PA; Saadon-Grosman N; Sun W; Kaiser S; Ladopoulou J; Xue A; Yeo BTT; Eldaief MC; Buckner RL
    bioRxiv; 2023 Aug; ():. PubMed ID: 37609246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human striatal association megaclusters.
    Kosakowski HL; Saadon-Grosman N; Du J; Eldaief MC; Buckner RL
    J Neurophysiol; 2024 Jun; 131(6):1083-1100. PubMed ID: 38505898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel distributed networks dissociate episodic and social functions within the individual.
    DiNicola LM; Braga RM; Buckner RL
    J Neurophysiol; 2020 Mar; 123(3):1144-1179. PubMed ID: 32049593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks.
    Braga RM; DiNicola LM; Becker HC; Buckner RL
    J Neurophysiol; 2020 Nov; 124(5):1415-1448. PubMed ID: 32965153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual.
    Xue A; Kong R; Yang Q; Eldaief MC; Angeli PA; DiNicola LM; Braga RM; Buckner RL; Yeo BTT
    J Neurophysiol; 2021 Feb; 125(2):358-384. PubMed ID: 33427596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
    Yeo BT; Krienen FM; Sepulcre J; Sabuncu MR; Lashkari D; Hollinshead M; Roffman JL; Smoller JW; Zöllei L; Polimeni JR; Fischl B; Liu H; Buckner RL
    J Neurophysiol; 2011 Sep; 106(3):1125-65. PubMed ID: 21653723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity.
    Braga RM; Buckner RL
    Neuron; 2017 Jul; 95(2):457-471.e5. PubMed ID: 28728026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Within-Individual Organization of the Human Cognitive Cerebellum: Evidence for Closely Juxtaposed, Functionally Specialized Regions.
    Saadon-Grosman N; Du J; Kosakowski HL; Angeli PA; DiNicola LM; Eldaief MC; Buckner RL
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional specialization of parallel distributed networks revealed by analysis of trial-to-trial variation in processing demands.
    DiNicola LM; Ariyo OI; Buckner RL
    J Neurophysiol; 2023 Jan; 129(1):17-40. PubMed ID: 36197013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Working memory load-dependent changes in cortical network connectivity estimated by machine learning.
    Eryilmaz H; Dowling KF; Hughes DE; Rodriguez-Thompson A; Tanner A; Huntington C; Coon WG; Roffman JL
    Neuroimage; 2020 Aug; 217():116895. PubMed ID: 32360929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Handedness-dependent functional organizational patterns within the bilateral vestibular cortical network revealed by fMRI connectivity based parcellation.
    Kirsch V; Boegle R; Keeser D; Kierig E; Ertl-Wagner B; Brandt T; Dieterich M
    Neuroimage; 2018 Sep; 178():224-237. PubMed ID: 29787866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions.
    Braga RM; Van Dijk KRA; Polimeni JR; Eldaief MC; Buckner RL
    J Neurophysiol; 2019 Apr; 121(4):1513-1534. PubMed ID: 30785825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A third somatomotor representation in the human cerebellum.
    Saadon-Grosman N; Angeli PA; DiNicola LM; Buckner RL
    J Neurophysiol; 2022 Oct; 128(4):1051-1073. PubMed ID: 36130164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex.
    Yeo BT; Krienen FM; Chee MW; Buckner RL
    Neuroimage; 2014 Mar; 88():212-27. PubMed ID: 24185018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Side-by-side regions in dorsolateral prefrontal cortex estimated within the individual respond differentially to domain-specific and domain-flexible processes.
    DiNicola LM; Sun W; Buckner RL
    J Neurophysiol; 2023 Dec; 130(6):1602-1615. PubMed ID: 37937340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain network mechanisms of visual shape completion.
    Keane BP; Barch DM; Mill RD; Silverstein SM; Krekelberg B; Cole MW
    Neuroimage; 2021 Aug; 236():118069. PubMed ID: 33878383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographic Mapping as a Basic Principle of Functional Organization for Visual and Prefrontal Functional Connectivity.
    O'Rawe JF; Leung HC
    eNeuro; 2020; 7(1):. PubMed ID: 31988218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.