These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38489239)

  • 1. Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective.
    Ding Y; Qiang B; Chen Q; Liu Y; Zhang L; Liu Z
    J Chem Inf Model; 2024 Apr; 64(8):2955-2970. PubMed ID: 38489239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning of Reaction Properties via Learned Representations of the Condensed Graph of Reaction.
    Heid E; Green WH
    J Chem Inf Model; 2022 May; 62(9):2101-2110. PubMed ID: 34734699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery.
    Li Z; Huang R; Xia M; Patterson TA; Hong H
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges.
    Singh S; Sunoj RB
    Acc Chem Res; 2023 Feb; 56(3):402-412. PubMed ID: 36715248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug-target affinity prediction with extended graph learning-convolutional networks.
    Qi H; Yu T; Yu W; Liu C
    BMC Bioinformatics; 2024 Feb; 25(1):75. PubMed ID: 38365583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SELFIES and the future of molecular string representations.
    Krenn M; Ai Q; Barthel S; Carson N; Frei A; Frey NC; Friederich P; Gaudin T; Gayle AA; Jablonka KM; Lameiro RF; Lemm D; Lo A; Moosavi SM; Nápoles-Duarte JM; Nigam A; Pollice R; Rajan K; Schatzschneider U; Schwaller P; Skreta M; Smit B; Strieth-Kalthoff F; Sun C; Tom G; Falk von Rudorff G; Wang A; White AD; Young A; Yu R; Aspuru-Guzik A
    Patterns (N Y); 2022 Oct; 3(10):100588. PubMed ID: 36277819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forman persistent Ricci curvature (FPRC)-based machine learning models for protein-ligand binding affinity prediction.
    Wee J; Xia K
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Transformers in Cheminformatics.
    Luong KD; Singh A
    J Chem Inf Model; 2024 Jun; 64(11):4392-4409. PubMed ID: 38815246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring data-driven chemical SMILES tokenization approaches to identify key protein-ligand binding moieties.
    Temizer AB; Uludoğan G; Özçelik R; Koulani T; Ozkirimli E; Ulgen KO; Karali N; Özgür A
    Mol Inform; 2024 Mar; 43(3):e202300249. PubMed ID: 38196065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing molecular graphs with descriptors for the prediction of chemical reaction yields.
    Yarish D; Garkot S; Grygorenko OO; Radchenko DS; Moroz YS; Gurbych O
    J Comput Chem; 2023 Jan; 44(2):76-92. PubMed ID: 36264601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What Does the Machine Learn? Knowledge Representations of Chemical Reactivity.
    Kammeraad JA; Goetz J; Walker EA; Tewari A; Zimmerman PM
    J Chem Inf Model; 2020 Mar; 60(3):1290-1301. PubMed ID: 32091880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Contrastive Pretraining with Collaborative Featurizations.
    Zhu Y; Chen D; Du Y; Wang Y; Liu Q; Wu S
    J Chem Inf Model; 2024 Feb; 64(4):1112-1122. PubMed ID: 38315002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating molecular representations in machine learning models for drug response prediction and interpretability.
    Baptista D; Correia J; Pereira B; Rocha M
    J Integr Bioinform; 2022 Sep; 19(3):. PubMed ID: 36017668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field.
    Villalobos-Alva J; Ochoa-Toledo L; Villalobos-Alva MJ; Aliseda A; Pérez-Escamirosa F; Altamirano-Bustamante NF; Ochoa-Fernández F; Zamora-Solís R; Villalobos-Alva S; Revilla-Monsalve C; Kemper-Valverde N; Altamirano-Bustamante MM
    Front Bioeng Biotechnol; 2022; 10():788300. PubMed ID: 35875501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypergraph-based persistent cohomology (HPC) for molecular representations in drug design.
    Liu X; Wang X; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33480394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Reaction Yields via Supervised Learning.
    Żurański AM; Martinez Alvarado JI; Shields BJ; Doyle AG
    Acc Chem Res; 2021 Apr; 54(8):1856-1865. PubMed ID: 33788552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Intelligence for Autonomous Molecular Design: A Perspective.
    Joshi RP; Kumar N
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale Distributed Training of Transformers for Chemical Fingerprinting.
    Abdel-Aty H; Gould IR
    J Chem Inf Model; 2022 Oct; 62(20):4852-4862. PubMed ID: 36195574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.