BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38489336)

  • 1. BetaBuddy: An automated end-to-end computer vision pipeline for analysis of calcium fluorescence dynamics in β-cells.
    Alsup AM; Fowlds K; Cho M; Luber JM
    PLoS One; 2024; 19(3):e0299549. PubMed ID: 38489336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BetaBuddy: An end-to-end computer vision pipeline for the automated analysis of insulin secreting β-cells.
    Alsup AM; Fowlds K; Cho M; Luber JM
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking.
    Wood NE; Doncic A
    PLoS One; 2019; 14(3):e0206395. PubMed ID: 30917124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy.
    Buggenthin F; Marr C; Schwarzfischer M; Hoppe PS; Hilsenbeck O; Schroeder T; Theis FJ
    BMC Bioinformatics; 2013 Oct; 14():297. PubMed ID: 24090363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images.
    Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD
    Elife; 2021 Mar; 10():. PubMed ID: 33781383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences.
    Wait E; Winter M; Bjornsson C; Kokovay E; Wang Y; Goderie S; Temple S; Cohen AR
    BMC Bioinformatics; 2014 Oct; 15(1):328. PubMed ID: 25281197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning.
    Lugagne JB; Lin H; Dunlop MJ
    PLoS Comput Biol; 2020 Apr; 16(4):e1007673. PubMed ID: 32282792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cell Segmentation/Tracking Tool Based on Machine Learning.
    Deter HS; Dies M; Cameron CC; Butzin NC; Buceta J
    Methods Mol Biol; 2019; 2040():399-422. PubMed ID: 31432490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.
    Stylianidou S; Brennan C; Nissen SB; Kuwada NJ; Wiggins PA
    Mol Microbiol; 2016 Nov; 102(4):690-700. PubMed ID: 27569113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated olfactory bulb segmentation on high resolutional T2-weighted MRI.
    Estrada S; Lu R; Diers K; Zeng W; Ehses P; Stöcker T; Breteler MMB; Reuter M
    Neuroimage; 2021 Nov; 242():118464. PubMed ID: 34389442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From pixels to insights: Machine learning and deep learning for bioimage analysis.
    Jan M; Spangaro A; Lenartowicz M; Mattiazzi Usaj M
    Bioessays; 2024 Feb; 46(2):e2300114. PubMed ID: 38058114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting neuronal activity signals from microscopy recordings of contractile tissue using B-spline Explicit Active Surfaces (BEAS) cell tracking.
    Kazwiny Y; Pedrosa J; Zhang Z; Boesmans W; D'hooge J; Vanden Berghe P
    Sci Rep; 2021 May; 11(1):10937. PubMed ID: 34035411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC.
    Padovani F; Mairhörmann B; Falter-Braun P; Lengefeld J; Schmoller KM
    BMC Biol; 2022 Aug; 20(1):174. PubMed ID: 35932043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-LMBmap: a fully automated deep-learning pipeline for whole-brain profiling of neural circuitry.
    Li Z; Shang Z; Liu J; Zhen H; Zhu E; Zhong S; Sturgess RN; Zhou Y; Hu X; Zhao X; Wu Y; Li P; Lin R; Ren J
    Nat Methods; 2023 Oct; 20(10):1593-1604. PubMed ID: 37770711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated identification and tracking of cells in Cytometry of Reaction Rate Constant (CRRC).
    Nebbioso G; Yosief R; Koshkin V; Qiu Y; Peng C; Elisseev V; Krylov SN
    PLoS One; 2023; 18(7):e0282990. PubMed ID: 37399195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm to automate yeast segmentation and tracking.
    Doncic A; Eser U; Atay O; Skotheim JM
    PLoS One; 2013; 8(3):e57970. PubMed ID: 23520484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated cell tracking using StarDist and TrackMate.
    Fazeli E; Roy NH; Follain G; Laine RF; von Chamier L; Hänninen PE; Eriksson JE; Tinevez JY; Jacquemet G
    F1000Res; 2020; 9():1279. PubMed ID: 33224481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis.
    Burri O; Wolf B; Seitz A; Gönczy P
    PLoS One; 2017; 12(7):e0179752. PubMed ID: 28746386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy.
    Jang J; Wang C; Zhang X; Choi HJ; Pan X; Lin B; Yu Y; Whittle C; Ryan M; Chen Y; Lee K
    Cell Rep Methods; 2021 Nov; 1(7):. PubMed ID: 34888542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.