BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38489385)

  • 1. Heterogeneous elasticity drives ripening and controls bursting kinetics of transcriptional condensates.
    Meng L; Mao S; Lin J
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2316610121. PubMed ID: 38489385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of condensate material properties and chromatin heterogeneity governs nuclear condensate ripening.
    Banerjee DS; Chigumira T; Lackner RM; Kratz JC; Chenoweth DM; Banerjee S; Zhang H
    bioRxiv; 2024 May; ():. PubMed ID: 38766065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscale structure-function relationships in mitochondrial transcriptional condensates.
    Feric M; Sarfallah A; Dar F; Temiakov D; Pappu RV; Misteli T
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2207303119. PubMed ID: 36191226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA in formation and regulation of transcriptional condensates.
    Sharp PA; Chakraborty AK; Henninger JE; Young RA
    RNA; 2022 Jan; 28(1):52-57. PubMed ID: 34772787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient crosslinking controls the condensate formation pathway within chromatin networks.
    Wu ZP; Bloom KS; Forest MG; Cao XZ
    Phys Rev E; 2024 Apr; 109(4):L042401. PubMed ID: 38755828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of dynamic genome organization and biomolecular condensates.
    Chung YC; Tu LC
    Curr Opin Cell Biol; 2023 Dec; 85():102252. PubMed ID: 37806293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression.
    Li W; Jiang H
    J Mol Biol; 2022 Jan; 434(1):167151. PubMed ID: 34271007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase separation in transcription factor dynamics and chromatin organization.
    Wagh K; Garcia DA; Upadhyaya A
    Curr Opin Struct Biol; 2021 Dec; 71():148-155. PubMed ID: 34303933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function moves biomolecular condensates in phase space.
    Feric M; Misteli T
    Bioessays; 2022 May; 44(5):e2200001. PubMed ID: 35243657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional condensates and phase separation: condensing information across scales and mechanisms.
    Demmerle J; Hao S; Cai D
    Nucleus; 2023 Dec; 14(1):2213551. PubMed ID: 37218279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of a condensate effect on super-enhancer controlled gene bursting.
    Du M; Stitzinger SH; Spille JH; Cho WK; Lee C; Hijaz M; Quintana A; Cissé II
    Cell; 2024 Jan; 187(2):331-344.e17. PubMed ID: 38194964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging insights into transcriptional condensates.
    Ryu K; Park G; Cho WK
    Exp Mol Med; 2024 Apr; 56(4):820-826. PubMed ID: 38658705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active microrheology of protein condensates using colloidal probe-AFM.
    Li X; van der Gucht J; Erni P; de Vries R
    J Colloid Interface Sci; 2023 Feb; 632(Pt B):357-366. PubMed ID: 36436394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses.
    Li Q; Liu Y; Zhang X
    Plant Cell; 2024 Jan; 36(2):227-245. PubMed ID: 37772963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response.
    Chowdhary S; Kainth AS; Paracha S; Gross DS; Pincus D
    Mol Cell; 2022 Nov; 82(22):4386-4399.e7. PubMed ID: 36327976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting of biomolecular condensates to the autophagy pathway.
    Ma X; Li P; Ge L
    Trends Cell Biol; 2023 Jun; 33(6):505-516. PubMed ID: 36150962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecular condensates in cancer biology.
    Suzuki HI; Onimaru K
    Cancer Sci; 2022 Feb; 113(2):382-391. PubMed ID: 34865286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G-Quadruplexes in Nuclear Biomolecular Condensates.
    Pavlova I; Iudin M; Surdina A; Severov V; Varizhuk A
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.