These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38489447)

  • 21. A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
    Malik R; Sharma P; Poulose S; Ahlawat S; Khare K
    J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-view holographic three-dimensional display using a single spatial light modulator and a directional light-guide plate composed of pixelated gratings.
    Su Y; Cai Z; Shi L; Zhou F; Wu J
    Appl Opt; 2019 Sep; 58(25):6912-6919. PubMed ID: 31503661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. See-through holographic display with randomly distributed partial computer generated holograms.
    Mu CT; Tseng SH; Chen CH
    Opt Express; 2020 Nov; 28(24):35674-35681. PubMed ID: 33379678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues.
    Zhang H; Zhao Y; Cao L; Jin G
    Opt Express; 2015 Feb; 23(4):3901-13. PubMed ID: 25836429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase-difference-based compression of phase-only holograms for holographic three-dimensional display.
    Gu H; Jin G
    Opt Express; 2018 Dec; 26(26):33592-33603. PubMed ID: 30650792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction.
    Quan J; Yan B; Sang X; Zhong C; Li H; Qin X; Xiao R; Sun Z; Dong Y; Zhang H
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conjugate wavefront encoding: an efficient eyebox extension approach for holographic Maxwellian near-eye display.
    Wang Z; Zhang X; Lv G; Feng Q; Wang A; Ming H
    Opt Lett; 2021 Nov; 46(22):5623-5626. PubMed ID: 34780421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth.
    Ji S; Yang L; Zhang C; Cai Z; Hu Y; Li J; Wu D; Chu J
    Opt Lett; 2018 Aug; 43(15):3514-3517. PubMed ID: 30067699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Speckle-free compact holographic near-eye display using camera-in-the-loop optimization with phase constraint.
    Chen L; Zhu R; Zhang H
    Opt Express; 2022 Dec; 30(26):46649-46665. PubMed ID: 36558612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatic-dispersion-corrected full-color holographic display using directional-view image scaling method.
    Piao YL; Erdenebat MU; Kwon KC; Gil SK; Kim N
    Appl Opt; 2019 Feb; 58(5):A120-A127. PubMed ID: 30873968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crosstalk-free for multi-plane holographic display using double-constraint stochastic gradient descent.
    Wang J; Wang J; Zhou J; Zhang Y; Wu Y
    Opt Express; 2023 Sep; 31(19):31142-31157. PubMed ID: 37710641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lens array-based holographic 3D display with an expanded field of view and eyebox.
    Wang Z; Lv G; Pang Y; Feng Q; Wang A; Ming H
    Opt Lett; 2023 Nov; 48(21):5559-5562. PubMed ID: 37910702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Holographic multiplane near-eye display based on amplitude-only wavefront modulation.
    Chang C; Cui W; Gao L
    Opt Express; 2019 Oct; 27(21):30960-30970. PubMed ID: 31684337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hologram computation using the radial point spread function.
    Yasuki D; Shimobaba T; Makowski M; Suszek J; Kakue T; Ito T
    Appl Opt; 2021 Oct; 60(28):8829-8837. PubMed ID: 34613109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Resolution Multiview Holographic Display Based on the Holographic Optical Element.
    Qin X; Sang X; Li H; Xiao R; Zhong C; Yan B; Sun Z; Dong Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Color liquid crystal grating based color holographic 3D display system with large viewing angle.
    Wang D; Li YL; Chu F; Li NN; Li ZS; Lee SD; Nie ZQ; Liu C; Wang QH
    Light Sci Appl; 2024 Jan; 13(1):16. PubMed ID: 38221521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration.
    Sato H; Kakue T; Ichihashi Y; Endo Y; Wakunami K; Oi R; Yamamoto K; Nakayama H; Shimobaba T; Ito T
    Sci Rep; 2018 Jan; 8(1):1500. PubMed ID: 29367632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach.
    Wang Z; Zhu LM; Zhang X; Dai P; Lv GQ; Feng QB; Wang AT; Ming H
    Opt Lett; 2020 Feb; 45(3):615-618. PubMed ID: 32004265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time realistic computer-generated hologram with accurate depth precision and a large depth range.
    Zhong C; Sang X; Yan B; Li H; Chen D; Qin X
    Opt Express; 2022 Oct; 30(22):40087-40100. PubMed ID: 36298947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram.
    Ko SB; Park JH
    Opt Express; 2017 Nov; 25(24):29788-29797. PubMed ID: 29221015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.