These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38489646)

  • 1. Readout-Induced Suppression and Enhancement of Superconducting Qubit Lifetimes.
    Thorbeck T; Xiao Z; Kamal A; Govia LCG
    Phys Rev Lett; 2024 Mar; 132(9):090602. PubMed ID: 38489646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators.
    Schlör S; Lisenfeld J; Müller C; Bilmes A; Schneider A; Pappas DP; Ustinov AV; Weides M
    Phys Rev Lett; 2019 Nov; 123(19):190502. PubMed ID: 31765204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Rifling: Protecting a Qubit from Measurement Back Action.
    Szombati D; Gomez Frieiro A; Müller C; Jones T; Jerger M; Fedorov A
    Phys Rev Lett; 2020 Feb; 124(7):070401. PubMed ID: 32142306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong tunable coupling between a superconducting charge and phase qubit.
    Fay A; Hoskinson E; Lecocq F; Lévy LP; Hekking FW; Guichard W; Buisson O
    Phys Rev Lett; 2008 May; 100(18):187003. PubMed ID: 18518410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Zeno Effects from Measurement Controlled Qubit-Bath Interactions.
    Harrington PM; Monroe JT; Murch KW
    Phys Rev Lett; 2017 Jun; 118(24):240401. PubMed ID: 28665648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive readout for a superconducting flux qubit.
    Lupaşcu A; Verwijs CJ; Schouten RN; Harmans CJ; Mooij JE
    Phys Rev Lett; 2004 Oct; 93(17):177006. PubMed ID: 15525116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The flux qubit revisited to enhance coherence and reproducibility.
    Yan F; Gustavsson S; Kamal A; Birenbaum J; Sears AP; Hover D; Gudmundsen TJ; Rosenberg D; Samach G; Weber S; Yoder JL; Orlando TP; Clarke J; Kerman AJ; Oliver WD
    Nat Commun; 2016 Nov; 7():12964. PubMed ID: 27808092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dephasing and dissipation in qubit thermodynamics.
    Pekola JP; Masuyama Y; Nakamura Y; Bergli J; Galperin YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062109. PubMed ID: 26172663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical decoupling and dephasing in interacting two-level systems.
    Gustavsson S; Yan F; Bylander J; Yoshihara F; Nakamura Y; Orlando TP; Oliver WD
    Phys Rev Lett; 2012 Jul; 109(1):010502. PubMed ID: 23031094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast superconducting qubit readout with the quarton coupler.
    Ye Y; Kline JB; Chen S; Yen A; O'Brien KP
    Sci Adv; 2024 Oct; 10(41):eado9094. PubMed ID: 39383228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits.
    Guo Q; Zheng SB; Wang J; Song C; Zhang P; Li K; Liu W; Deng H; Huang K; Zheng D; Zhu X; Wang H; Lu CY; Pan JW
    Phys Rev Lett; 2018 Sep; 121(13):130501. PubMed ID: 30312077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of Protection of a Superconducting Qubit from Energy Decay.
    Lin YH; Nguyen LB; Grabon N; San Miguel J; Pankratova N; Manucharyan VE
    Phys Rev Lett; 2018 Apr; 120(15):150503. PubMed ID: 29756871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing.
    Ficheux Q; Jezouin S; Leghtas Z; Huard B
    Nat Commun; 2018 May; 9(1):1926. PubMed ID: 29765040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator.
    Allman MS; Altomare F; Whittaker JD; Cicak K; Li D; Sirois A; Strong J; Teufel JD; Simmonds RW
    Phys Rev Lett; 2010 Apr; 104(17):177004. PubMed ID: 20482130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum information storage using tunable flux qubits.
    Steffen M; Brito F; DiVincenzo D; Farinelli M; Keefe G; Ketchen M; Kumar S; Milliken F; Rothwell MB; Rozen J; Koch RH
    J Phys Condens Matter; 2010 Feb; 22(5):053201. PubMed ID: 21386337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gated Conditional Displacement Readout of Superconducting Qubits.
    Touzard S; Kou A; Frattini NE; Sivak VV; Puri S; Grimm A; Frunzio L; Shankar S; Devoret MH
    Phys Rev Lett; 2019 Mar; 122(8):080502. PubMed ID: 30932609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity quantum electrodynamics with separate photon storage and qubit readout modes.
    Leek PJ; Baur M; Fink JM; Bianchetti R; Steffen L; Filipp S; Wallraff A
    Phys Rev Lett; 2010 Mar; 104(10):100504. PubMed ID: 20366408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of Dephasing by Qubit Motion in Superconducting Circuits.
    Averin DV; Xu K; Zhong YP; Song C; Wang H; Han S
    Phys Rev Lett; 2016 Jan; 116(1):010501. PubMed ID: 26799006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise spectroscopy using correlations of single-shot qubit readout.
    Fink T; Bluhm H
    Phys Rev Lett; 2013 Jan; 110(1):010403. PubMed ID: 23383763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluxon readout of a superconducting qubit.
    Fedorov KG; Shcherbakova AV; Wolf MJ; Beckmann D; Ustinov AV
    Phys Rev Lett; 2014 Apr; 112(16):160502. PubMed ID: 24815629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.