These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38489654)

  • 1. Ultrahigh Critical Current Density across Sliding Electrical Contacts in Structural Superlubric State.
    Wu T; Chen W; Wangye L; Wang Y; Wu Z; Ma M; Zheng Q
    Phys Rev Lett; 2024 Mar; 132(9):096201. PubMed ID: 38489654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The anomalous effect of electric field on friction for microscale structural superlubric graphite/Au contact.
    Wang Y; Wang J; Wu T; Chen W; Peng D; Wu Z; Ma M; Zheng Q
    Natl Sci Rev; 2024 Sep; 11(9):nwae019. PubMed ID: 39144740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 100 km wear-free sliding achieved by microscale superlubric graphite/DLC heterojunctions under ambient conditions.
    Peng D; Wang J; Jiang H; Zhao S; Wu Z; Tian K; Ma M; Zheng Q
    Natl Sci Rev; 2022 Jan; 9(1):nwab109. PubMed ID: 35070329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of Friction in Superlubric Graphite Contacts.
    Qu C; Wang K; Wang J; Gongyang Y; Carpick RW; Urbakh M; Zheng Q
    Phys Rev Lett; 2020 Sep; 125(12):126102. PubMed ID: 33016762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a Microscale Superlubric Graphite Interface.
    Wang K; Qu C; Wang J; Quan B; Zheng Q
    Phys Rev Lett; 2020 Jul; 125(2):026101. PubMed ID: 32701344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust structural superlubricity under gigapascal pressures.
    Sun T; Gao E; Jia X; Bian J; Wang Z; Ma M; Zheng Q; Xu Z
    Nat Commun; 2024 Jul; 15(1):5952. PubMed ID: 39009569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load-induced dynamical transitions at graphene interfaces.
    Peng D; Wu Z; Shi D; Qu C; Jiang H; Song Y; Ma M; Aeppli G; Urbakh M; Zheng Q
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12618-12623. PubMed ID: 32457159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation and Characterization of Submillimeter Shearing Contacts in Graphite by the Micro-Dome Technique.
    Yang D; Qu C; Gongyang Y; Zheng Q
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44563-44571. PubMed ID: 37672630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust microscale structural superlubricity between graphite and nanostructured surface.
    Huang X; Li T; Wang J; Xia K; Tan Z; Peng D; Xiang X; Liu B; Ma M; Zheng Q
    Nat Commun; 2023 May; 14(1):2931. PubMed ID: 37217500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automatic transfer and measurement system for structural superlubric materials.
    Chen L; Lin C; Shi D; Huang X; Zheng Q; Nie J; Ma M
    Nat Commun; 2023 Oct; 14(1):6323. PubMed ID: 37816725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscale Schottky superlubric generator with high direct-current density and ultralong life.
    Huang X; Xiang X; Nie J; Peng D; Yang F; Wu Z; Jiang H; Xu Z; Zheng Q
    Nat Commun; 2021 Apr; 12(1):2268. PubMed ID: 33859180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocity-Dependent Friction of Graphene at Electrical Contact Interfaces.
    Lang H; Peng Y; Zou K; Huang Y; Song C
    Langmuir; 2023 Aug; 39(32):11363-11370. PubMed ID: 37532707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Amorphous-Crystalline Phase Transition on Superlubric Sliding.
    Cihan E; Dietzel D; Jany BR; Schirmeisen A
    Phys Rev Lett; 2023 Mar; 130(12):126205. PubMed ID: 37027841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superlubricity between Graphite Layers in Ultrahigh Vacuum.
    Liu Y; Wang K; Xu Q; Zhang J; Hu Y; Ma T; Zheng Q; Luo J
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43167-43172. PubMed ID: 32840104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size.
    Dietzel D; Brndiar J; Štich I; Schirmeisen A
    ACS Nano; 2017 Aug; 11(8):7642-7647. PubMed ID: 28715171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotational Instability in Superlubric Joints.
    Qu C; Shi S; Ma M; Zheng Q
    Phys Rev Lett; 2019 Jun; 122(24):246101. PubMed ID: 31322388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.