These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38489850)
1. Brackish groundwater desalination by constant current membrane capacitive deionization (MCDI): Results of a long-term field trial in Central Australia. Zhu Y; Miller C; Lian B; Wang Y; Fletcher J; Zhou H; He Z; Lyu S; Purser M; Juracich P; Sweeney D; Waite TD Water Res; 2024 May; 254():121413. PubMed ID: 38489850 [TBL] [Abstract][Full Text] [Related]
2. Insufficient desorption of ions in constant-current membrane capacitive deionization (MCDI): Problems and solutions. He Z; Li Y; Wang Y; Miller CJ; Fletcher J; Lian B; Waite TD Water Res; 2023 Aug; 242():120273. PubMed ID: 37393810 [TBL] [Abstract][Full Text] [Related]
3. Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations. He Z; Liu S; Lian B; Fletcher J; Bales C; Wang Y; Waite TD Water Res; 2021 Oct; 204():117646. PubMed ID: 34543974 [TBL] [Abstract][Full Text] [Related]
4. Removal of Trace Uranium from Groundwaters Using Membrane Capacitive Deionization Desalination for Potable Supply in Remote Communities: Bench, Pilot, and Field Scale Investigations. Bales C; Kinsela AS; Miller C; Wang Y; Zhu Y; Lian B; Waite TD Environ Sci Technol; 2023 Aug; 57(30):11345-11355. PubMed ID: 37464745 [TBL] [Abstract][Full Text] [Related]
5. Machine learning modelling of a membrane capacitive deionization (MCDI) system for prediction of long-term system performance and optimization of process control parameters in remote brackish water desalination. Zhu Y; Lian B; Wang Y; Miller C; Bales C; Fletcher J; Yao L; Waite TD Water Res; 2022 Dec; 227():119349. PubMed ID: 36402097 [TBL] [Abstract][Full Text] [Related]
6. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics. Li G; Cai W; Zhao R; Hao L Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403 [TBL] [Abstract][Full Text] [Related]
7. Energy recovery in membrane capacitive deionization. Długołęcki P; van der Wal A Environ Sci Technol; 2013 May; 47(9):4904-10. PubMed ID: 23477563 [TBL] [Abstract][Full Text] [Related]
8. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination. Liang P; Yuan L; Yang X; Zhou S; Huang X Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976 [TBL] [Abstract][Full Text] [Related]
9. Energy Efficiency of Electro-Driven Brackish Water Desalination: Electrodialysis Significantly Outperforms Membrane Capacitive Deionization. Patel SK; Qin M; Walker WS; Elimelech M Environ Sci Technol; 2020 Mar; 54(6):3663-3677. PubMed ID: 32084313 [TBL] [Abstract][Full Text] [Related]
10. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Hassanvand A; Chen GQ; Webley PA; Kentish SE Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078 [TBL] [Abstract][Full Text] [Related]
11. Optimization of salt adsorption rate in membrane capacitive deionization. Zhao R; Satpradit O; Rijnaarts HH; Biesheuvel PM; van der Wal A Water Res; 2013 Apr; 47(5):1941-52. PubMed ID: 23395310 [TBL] [Abstract][Full Text] [Related]
12. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Tang W; He D; Zhang C; Waite TD Water Res; 2017 Sep; 121():302-310. PubMed ID: 28558281 [TBL] [Abstract][Full Text] [Related]
13. Improvements in desorption rate and electrode stability of membrane capacitive deionization systems by optimizing operation parameters. Son JW; Choi JH Water Res; 2022 Jul; 220():118713. PubMed ID: 35687975 [TBL] [Abstract][Full Text] [Related]
14. Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents. Lee M; Fan CS; Chen YW; Chang KC; Chiueh PT; Hou CH Chemosphere; 2019 Nov; 235():413-422. PubMed ID: 31272001 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Tang W; He D; Zhang C; Kovalsky P; Waite TD Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988 [TBL] [Abstract][Full Text] [Related]
16. Partial Desalination of Saline Groundwater: Comparison of Nanofiltration, Reverse Osmosis and Membrane Capacitive Deionisation. Rosentreter H; Walther M; Lerch A Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33673190 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Pilot-Scale Capacitive Deionization (MCDI) and Low-Pressure Reverse Osmosis (LPRO) for PV-Powered Brackish Water Desalination in Morocco for Irrigation of Argan Trees. Cañas Kurz EE; Hellriegel U; Hdoufane A; Benaceur I; Anane M; Jaiti F; El-Abbassi A; Hoinkis J Membranes (Basel); 2023 Jul; 13(7):. PubMed ID: 37505034 [TBL] [Abstract][Full Text] [Related]
18. Fate of organic micropollutants during brackish water desalination for drinking water production in decentralized capacitive electrodialysis. Ma L; Roman M; Alhadidi A; Jia M; Martini F; Xue Y; Verliefde A; Gutierrez L; Cornelissen E Water Res; 2023 Oct; 245():120625. PubMed ID: 37820474 [TBL] [Abstract][Full Text] [Related]
19. Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. Zhang C; Wu L; Ma J; Pham AN; Wang M; Waite TD Environ Sci Technol; 2019 Nov; 53(22):13364-13373. PubMed ID: 31657549 [TBL] [Abstract][Full Text] [Related]
20. A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes. Elewa MM; El Batouti M; Al-Harby NF Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]