These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38489895)

  • 41. Training recurrent neural networks robust to incomplete data: Application to Alzheimer's disease progression modeling.
    Mehdipour Ghazi M; Nielsen M; Pai A; Cardoso MJ; Modat M; Ourselin S; Sørensen L;
    Med Image Anal; 2019 Apr; 53():39-46. PubMed ID: 30682584
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multimodal motor imagery decoding method based on temporal spatial feature alignment and fusion.
    Zhang Y; Qiu S; He H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36854181
    [No Abstract]   [Full Text] [Related]  

  • 43. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bayesian multi-task learning for decoding multi-subject neuroimaging data.
    Marquand AF; Brammer M; Williams SC; Doyle OM
    Neuroimage; 2014 May; 92(100):298-311. PubMed ID: 24531053
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Group-level spatio-temporal pattern recovery in MEG decoding using multi-task joint feature learning.
    Kia SM; Pedregosa F; Blumenthal A; Passerini A
    J Neurosci Methods; 2017 Jun; 285():97-108. PubMed ID: 28495369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI.
    Mittal A; Aggarwal P; Pessoa L; Gupta A
    Proc Indian Conf Comput Vis Graphics Image Proc; 2021 Dec; 2021():. PubMed ID: 36350798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Task fMRI data analysis based on supervised stochastic coordinate coding.
    Lv J; Lin B; Li Q; Zhang W; Zhao Y; Jiang X; Guo L; Han J; Hu X; Guo C; Ye J; Liu T
    Med Image Anal; 2017 May; 38():1-16. PubMed ID: 28242473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional Alignment-Auxiliary Generative Adversarial Network-Based Visual Stimuli Reconstruction via Multi-Subject fMRI.
    Huang S; Sun L; Yousefnezhad M; Wang M; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2715-2725. PubMed ID: 37279132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Learning brain representation using recurrent Wasserstein generative adversarial net.
    Qiang N; Dong Q; Liang H; Li J; Zhang S; Zhang C; Ge B; Sun Y; Gao J; Liu T; Yue H; Zhao S
    Comput Methods Programs Biomed; 2022 Aug; 223():106979. PubMed ID: 35792364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the benefits of self-taught learning for brain decoding.
    Germani E; Fromont E; Maumet C
    Gigascience; 2022 Dec; 12():. PubMed ID: 37132522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differentiating brain states via multi-clip random fragment strategy-based interactive bidirectional recurrent neural network.
    Zhang S; Shi E; Wu L; Wang R; Yu S; Liu Z; Xu S; Liu T; Zhao S
    Neural Netw; 2023 Aug; 165():1035-1049. PubMed ID: 37473638
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multimodal deep neural decoding reveals highly resolved spatiotemporal profile of visual object representation in humans.
    Watanabe N; Miyoshi K; Jimura K; Shimane D; Keerativittayayut R; Nakahara K; Takeda M
    Neuroimage; 2023 Jul; 275():120164. PubMed ID: 37169115
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling task-based fMRI data via deep belief network with neural architecture search.
    Qiang N; Dong Q; Zhang W; Ge B; Ge F; Liang H; Sun Y; Gao J; Liu T
    Comput Med Imaging Graph; 2020 Jul; 83():101747. PubMed ID: 32593949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.
    Zhao Y; Dong Q; Chen H; Iraji A; Li Y; Makkie M; Kou Z; Liu T
    Med Image Anal; 2017 Dec; 42():200-211. PubMed ID: 28843214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network.
    Dong Q; Ge F; Ning Q; Zhao Y; Lv J; Huang H; Yuan J; Jiang X; Shen D; Liu T
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1739-1748. PubMed ID: 31647417
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.
    Jie B; Liu M; Shen D
    Med Image Anal; 2018 Jul; 47():81-94. PubMed ID: 29702414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamics of functional network organization through graph mixture learning.
    Ricchi I; Tarun A; Maretic HP; Frossard P; Van De Ville D
    Neuroimage; 2022 May; 252():119037. PubMed ID: 35219859
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decoding Task-Based fMRI Data with Graph Neural Networks, Considering Individual Differences.
    Saeidi M; Karwowski W; Farahani FV; Fiok K; Hancock PA; Sawyer BD; Christov-Moore L; Douglas PK
    Brain Sci; 2022 Aug; 12(8):. PubMed ID: 36009157
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.