These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38490169)
21. Leg length discrepancy and lower limb alignment after total hip arthroplasty in unilateral hip osteoarthritis patients. Fujimaki H; Inaba Y; Kobayashi N; Tezuka T; Hirata Y; Saito T J Orthop Sci; 2013 Nov; 18(6):969-76. PubMed ID: 23963590 [TBL] [Abstract][Full Text] [Related]
22. Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor. Arshad MZ; Jamsrandorj A; Kim J; Mun KR Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365930 [TBL] [Abstract][Full Text] [Related]
23. Low-back pain in transfemoral amputees: is there a correlation with static or dynamic leg-length discrepancy? Morgenroth DC; Shakir A; Orendurff MS; Czerniecki JM Am J Phys Med Rehabil; 2009 Feb; 88(2):108-13. PubMed ID: 19169176 [TBL] [Abstract][Full Text] [Related]
24. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning. Kiprijanovska I; Gjoreski H; Gams M Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750 [TBL] [Abstract][Full Text] [Related]
25. Leg length discrepancy after total hip arthroplasty: Can leg length be satisfactorily controlled via anterior approach without a traction table? Evaluation in 56 patients with EOS 3D. Lecoanet P; Vargas M; Pallaro J; Thelen T; Ribes C; Fabre T Orthop Traumatol Surg Res; 2018 Dec; 104(8):1143-1148. PubMed ID: 30314938 [TBL] [Abstract][Full Text] [Related]
26. Anatomical landmark localization via convolutional neural networks for limb-length discrepancy measurements. Tsai A Pediatr Radiol; 2021 Jul; 51(8):1431-1447. PubMed ID: 33885918 [TBL] [Abstract][Full Text] [Related]
27. Recognition of sports and daily activities through deep learning and convolutional block attention. Mekruksavanich S; Phaphan W; Hnoohom N; Jitpattanakul A PeerJ Comput Sci; 2024; 10():e2100. PubMed ID: 38855220 [TBL] [Abstract][Full Text] [Related]
28. Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System. Liu K; Liu Y; Ji S; Gao C; Fu J Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339749 [TBL] [Abstract][Full Text] [Related]
29. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation. Li J; Peng J; Lu Z; Huang K Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470 [TBL] [Abstract][Full Text] [Related]
30. BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors. Sharifi-Renani M; Mahoor MH; Clary CW Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447628 [TBL] [Abstract][Full Text] [Related]
31. Has the Threshold for Epiphysiodesis Versus Lengthening Changed in the Era of Magnetically Controlled Nails? Nichols LRB J Pediatr Orthop; 2021 Jul; 41(Suppl 1):S24-S32. PubMed ID: 34096534 [TBL] [Abstract][Full Text] [Related]
32. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction. Chen B; Chen C; Hu J; Sayeed Z; Qi J; Darwiche HF; Little BE; Lou S; Darwish M; Foote C; Palacio-Lascano C Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298311 [TBL] [Abstract][Full Text] [Related]
33. Development and evaluation of deep-learning measurement of leg length discrepancy: bilateral iliac crest height difference measurement. Kim MJ; Choi YH; Lee SB; Cho YJ; Lee SH; Shin CH; Shin SM; Cheon JE Pediatr Radiol; 2022 Oct; 52(11):2197-2205. PubMed ID: 36121497 [TBL] [Abstract][Full Text] [Related]
34. Inter-limb difference of mechanical work in limb length discrepancy. Song MH; Song HR; Kim WS Gait Posture; 2021 Feb; 84():79-86. PubMed ID: 33285382 [TBL] [Abstract][Full Text] [Related]
35. Gait Analysis of Leg Length Discrepancy-Differentiated Hip Replacement Patients With Developmental Dysplasia: A Midterm Follow-Up. Chen G; Nie Y; Xie J; Cao G; Huang Q; Pei F J Arthroplasty; 2018 May; 33(5):1437-1441. PubMed ID: 29402716 [TBL] [Abstract][Full Text] [Related]
36. Effect of correction of leg length discrepancy on the biomechanical characteristics of the pelvis and hip joints among standing workers. Kim Y Work; 2022; 71(4):1129-1136. PubMed ID: 35253681 [TBL] [Abstract][Full Text] [Related]
37. The effects of real and artificial Leg Length Discrepancy on mechanical work and energy cost during the gait. Assogba TF; Boulet S; Detrembleur C; Mahaudens P Gait Posture; 2018 Jan; 59():147-151. PubMed ID: 29031140 [TBL] [Abstract][Full Text] [Related]
38. Limb length discrepancy after total knee arthroplasty may contribute to suboptimal functional results. Hinarejos P; Sánchez-Soler J; Leal-Blanquet J; Torres-Claramunt R; Monllau JC Eur J Orthop Surg Traumatol; 2020 Oct; 30(7):1199-1204. PubMed ID: 32367219 [TBL] [Abstract][Full Text] [Related]
39. A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors. Senyurek VY; Imtiaz MH; Belsare P; Tiffany S; Sazonov E Biomed Eng Lett; 2020 May; 10(2):195-203. PubMed ID: 32431952 [TBL] [Abstract][Full Text] [Related]
40. Joint moments in minor limb length discrepancy: a pilot study. Goel A; Loudon J; Nazare A; Rondinelli R; Hassanein K Am J Orthop (Belle Mead NJ); 1997 Dec; 26(12):852-6. PubMed ID: 9413588 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]