These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38490169)

  • 41. Deep Learning for Fall Risk Assessment With Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait Parameters.
    Tunca C; Salur G; Ersoy C
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1994-2005. PubMed ID: 31831454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.
    Zhao Y; Zhou S
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264503
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Upper extremity motion during gait in adolescents with structural leg length discrepancy-An exploratory study.
    Angelico F; Freslier M; Romkes J; Brunner R; Schmid S
    Gait Posture; 2017 Mar; 53():115-120. PubMed ID: 28152452
    [TBL] [Abstract][Full Text] [Related]  

  • 44. No relationship between mild limb length discrepancy and spine, hip or knee degenerative disease in a large cadaveric collection.
    Liu RW; Streit JJ; Weinberg DS; Shaw JD; LeeVan E; Cooperman DR
    Orthop Traumatol Surg Res; 2018 Sep; 104(5):603-607. PubMed ID: 29705080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Total Hip Arthroplasty: Leg Length Discrepancy Affects Functional Outcomes and Patient's Gait.
    Zhang Y; He W; Cheng T; Zhang X
    Cell Biochem Biophys; 2015 May; 72(1):215-9. PubMed ID: 25516289
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leg-Length Discrepancy Variability on Standard Anteroposterior Pelvis Radiographs: An Analysis Using Deep Learning Measurements.
    Jang SJ; Kunze KN; Bornes TD; Anderson CG; Mayman DJ; Jerabek SA; Vigdorchik JM; Sculco PK
    J Arthroplasty; 2023 Oct; 38(10):2017-2023.e3. PubMed ID: 36898486
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated detection and recognition system for chewable food items using advanced deep learning models.
    Kumar Y; Koul A; Kamini ; Woźniak M; Shafi J; Ijaz MF
    Sci Rep; 2024 Mar; 14(1):6589. PubMed ID: 38504098
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Leg Length Discrepancy: Dynamic Balance Response during Gait.
    Azizan NA; Basaruddin KS; Salleh AF; Sulaiman AR; Safar MJA; Rusli WMR
    J Healthc Eng; 2018; 2018():7815451. PubMed ID: 29983905
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Effect of Simulated Leg-Length Discrepancy on the Dynamic Parameters of the Feet during Gait-Cross-Sectional Research.
    Pereiro-Buceta H; Becerro-de-Bengoa-Vallejo R; Losa-Iglesias ME; López-López D; Navarro-Flores E; Martínez-Jiménez EM; Martiniano J; Calvo-Lobo C
    Healthcare (Basel); 2021 Jul; 9(8):. PubMed ID: 34442069
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Classification of Minor Gait Alterations Using Wearable Sensors and Deep Learning.
    Turner A; Hayes S
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3136-3145. PubMed ID: 30794506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of uninvolved side epiphysiodesis for limb length equalization in children with unilateral cerebral palsy: clinical evaluation with the Edinburgh visual gait score.
    Corradin M; Schiavon R; Borgo A; Deslandes J; Cersosimo A; Canavese F
    Eur J Orthop Surg Traumatol; 2018 Jul; 28(5):977-984. PubMed ID: 29214458
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection.
    Ahmad S; Ullah T; Ahmad I; Al-Sharabi A; Ullah K; Khan RA; Rasheed S; Ullah I; Uddin MN; Ali MS
    Comput Intell Neurosci; 2022; 2022():8141530. PubMed ID: 35785076
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of leg length inequality on joint contact forces of lower limbs during walking.
    Fazreena Othman N; Salleh Basaruddin K; Hanafi Mat Som M; Shukry Abdul Majid M; Razak Sulaiman A
    Acta Bioeng Biomech; 2019; 21(1):55-62. PubMed ID: 31197285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanical strategies implemented to compensate for mild leg length discrepancy during gait.
    Resende RA; Kirkwood RN; Deluzio KJ; Cabral S; Fonseca ST
    Gait Posture; 2016 May; 46():147-53. PubMed ID: 27131193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. What Are the Potential Benefits and Risks of Using Magnetically Driven Antegrade Intramedullary Lengthening Nails for Femoral Lengthening to Treat Leg Length Discrepancy?
    Frommer A; Roedl R; Gosheger G; Niemann M; Turkowski D; Toporowski G; Theil C; Laufer A; Vogt B
    Clin Orthop Relat Res; 2022 Apr; 480(4):790-803. PubMed ID: 34780384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of femoral offset and limb length discrepancy on hip joint muscle strength and gait trajectory after total hip arthroplasty.
    Sato H; Maezawa K; Gomi M; Kajihara H; Hayashi A; Maruyama Y; Nozawa M; Kaneko K
    Gait Posture; 2020 Mar; 77():276-282. PubMed ID: 32097887
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition.
    Reddy YRM; Muralidhar P; Srinivas M
    Brain Topogr; 2024 Jan; 37(1):1-18. PubMed ID: 37995000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing leg length discrepancy after femoral fracture: clinical examination or computed tomography?
    Harris I; Hatfield A; Walton J
    ANZ J Surg; 2005 May; 75(5):319-21. PubMed ID: 15932444
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders.
    Kolaghassi R; Al-Hares MK; Marcelli G; Sirlantzis K
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.