These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 384903)
41. System for evaluating clostridial inhibition in cured meat products. Robach MC; Ivey FJ; Hickey CS Appl Environ Microbiol; 1978 Jul; 36(1):210-1. PubMed ID: 211934 [TBL] [Abstract][Full Text] [Related]
42. Sodium hypophosphite inhibition of the growth of selected gram-positive foodborne pathogenic bacteria. Rhodehamel EJ; Pierson MD Int J Food Microbiol; 1990 Oct; 11(2):167-78. PubMed ID: 2124497 [TBL] [Abstract][Full Text] [Related]
43. Egg-yolk trypticase soy agar for the enumeration of heat-damaged spores of Clostridium sporogenes. Michels MJ; Kagei RF J Appl Bacteriol; 1983 Oct; 55(2):203-8. PubMed ID: 6228543 [TBL] [Abstract][Full Text] [Related]
44. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016 [TBL] [Abstract][Full Text] [Related]
45. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum. Stringer SC; Fairbairn DA; Peck MW J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882 [TBL] [Abstract][Full Text] [Related]
46. Effect of titanium (III) citrate as reducing agent on growth of rumen bacteria. Jones GA; Pickard MD Appl Environ Microbiol; 1980 Jun; 39(6):1144-7. PubMed ID: 7406484 [TBL] [Abstract][Full Text] [Related]
47. Multiple modes of inhibition of spore germination and outgrowth by reduced pH and sorbate. Blocher JC; Busta FF J Appl Bacteriol; 1985 Nov; 59(5):469-78. PubMed ID: 3936834 [TBL] [Abstract][Full Text] [Related]
48. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Graham AF; Mason DR; Maxwell FJ; Peck MW Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311 [TBL] [Abstract][Full Text] [Related]
49. Time-to-detection, percent-growth-positive and maximum growth rate models for Clostridium botulinum 56A at multiple temperatures. Zhao L; Montville TJ; Schaffner DW Int J Food Microbiol; 2002 Aug; 77(3):187-97. PubMed ID: 12160078 [TBL] [Abstract][Full Text] [Related]
50. Mechanisms of sorbate inhibition of Bacillus cereus T and Clostridium botulinum 62A spore germination. Smoot LA; Pierson MD Appl Environ Microbiol; 1981 Sep; 42(3):477-83. PubMed ID: 6794451 [TBL] [Abstract][Full Text] [Related]
52. Boticinogeny and actions of the bacteriocin. Anastasio KL; Soucheck JA; Sugiyama H J Bacteriol; 1971 Jul; 107(1):143-9. PubMed ID: 4935316 [TBL] [Abstract][Full Text] [Related]
53. Metabolism of fatty acid in yeast: addition of reducing agents to the reaction medium influences beta-oxidation activities, gamma-decalactone production, and cell ultrastructure in Sporidiobolus ruinenii cultivated on ricinoleic acid methyl ester. Feron G; Mauvais G; Lherminier J; Michel J; Wang XD; Viel C; Cachon R Can J Microbiol; 2007 Jun; 53(6):738-49. PubMed ID: 17668034 [TBL] [Abstract][Full Text] [Related]
54. The effect of sublethal doses of rifampin on the sporulation of Clostridium botulinum. Hawirko RZ; Chung KL; Magnusson AJ J Gen Microbiol; 1976 Jan; 92(1):81-8. PubMed ID: 1107487 [TBL] [Abstract][Full Text] [Related]
55. Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners. Bowen VG; Cerveny JG; Deibel RH Appl Microbiol; 1974 Mar; 27(3):605-6. PubMed ID: 4596392 [TBL] [Abstract][Full Text] [Related]
56. Germination of spores from Clostridium botulinum B-aphis and Ba410. Montville TJ; Jones SB; Conway LK; Sapers GM Appl Environ Microbiol; 1985 Oct; 50(4):795-800. PubMed ID: 3909964 [TBL] [Abstract][Full Text] [Related]
57. Effect of combination of Oxyrase and sodium thioglycolate on growth of Clostridium perfringens from spores under aerobic incubation. Jia Z; Liu Y; Hwang CA; Huang L Food Microbiol; 2020 Aug; 89():103413. PubMed ID: 32138984 [TBL] [Abstract][Full Text] [Related]
58. Disinfection methods for spores of Bacillus atrophaeus, B. anthracis, Clostridium tetani, C. botulinum and C. difficile. Oie S; Obayashi A; Yamasaki H; Furukawa H; Kenri T; Takahashi M; Kawamoto K; Makino S Biol Pharm Bull; 2011; 34(8):1325-9. PubMed ID: 21804226 [TBL] [Abstract][Full Text] [Related]
59. Screening of reducing agents for anaerobic growth of Candida albicans SC5314. Rymovicz AU; Souza RD; Gursky LC; Rosa RT; Trevilatto PC; Groppo FC; Rosa EA J Microbiol Methods; 2011 Mar; 84(3):461-6. PubMed ID: 21256882 [TBL] [Abstract][Full Text] [Related]
60. Chemical manipulation of the heat resistance of Clostridium botulinum spores. Alderton G; Ito KA; Chen JK Appl Environ Microbiol; 1976 Apr; 31(4):492-8. PubMed ID: 5056 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]