These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 384904)
1. Sodium nitrite and sorbic acid effects on Clostridium botulinum spore germination and total microbial growth in chicken frankfurter emulsions during temperature abuse. Sofos JN; Busta FF; Allen CE Appl Environ Microbiol; 1979 Jun; 37(6):1103-9. PubMed ID: 384904 [TBL] [Abstract][Full Text] [Related]
2. System for evaluating clostridial inhibition in cured meat products. Robach MC; Ivey FJ; Hickey CS Appl Environ Microbiol; 1978 Jul; 36(1):210-1. PubMed ID: 211934 [TBL] [Abstract][Full Text] [Related]
3. Effect of processing variables on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted meat cured with sorbic acid and sodium nitrite. Robach MC Appl Environ Microbiol; 1979 Nov; 38(5):846-9. PubMed ID: 44445 [TBL] [Abstract][Full Text] [Related]
4. Effect of nitrite and nitrate on toxin production by Clostridium botulinum and on nitrosamine formation in perishable canned comminuted cured meat. Christiansen LN; Johnston RW; Kautter DA; Howard JW; Aunan WJ Appl Microbiol; 1973 Mar; 25(3):357-62. PubMed ID: 4572891 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of sorbate inhibition of Bacillus cereus T and Clostridium botulinum 62A spore germination. Smoot LA; Pierson MD Appl Environ Microbiol; 1981 Sep; 42(3):477-83. PubMed ID: 6794451 [TBL] [Abstract][Full Text] [Related]
6. A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. Hospital XF; Hierro E; Stringer S; Fernández M Int J Food Microbiol; 2016 Feb; 218():66-70. PubMed ID: 26619314 [TBL] [Abstract][Full Text] [Related]
7. Quantification of toxin-encoding mRNA from Clostridium botulinum type E in media containing sorbic acid or sodium nitrite by competitive RT-PCR. Sharkey FH; Markos SI; Haylock RW FEMS Microbiol Lett; 2004 Mar; 232(2):139-44. PubMed ID: 15033232 [TBL] [Abstract][Full Text] [Related]
8. Multiple modes of inhibition of spore germination and outgrowth by reduced pH and sorbate. Blocher JC; Busta FF J Appl Bacteriol; 1985 Nov; 59(5):469-78. PubMed ID: 3936834 [TBL] [Abstract][Full Text] [Related]
9. Effects of potassium sorbate and other antibotulinal agents on germination and outgrowth of Clostridium botulinum type E spores in microcultures. Seward RA; Deibel RH; Lindsay RC Appl Environ Microbiol; 1982 Nov; 44(5):1212-21. PubMed ID: 6758699 [TBL] [Abstract][Full Text] [Related]
10. Effect of Polyphosphates in Combination with Nitrite-Sorbate or Sorbate on Clostridium botulinum Growth and Toxin Production in Chicken Frankfurter Emulsions. Nelson KA; Busta FF; Sofas JN; Wagner MK J Food Prot; 1983 Oct; 46(10):846-850. PubMed ID: 30921838 [TBL] [Abstract][Full Text] [Related]
11. Desmutagenic actions of ascorbic acid and cysteine on a new pyrrole mutagen formed by the reaction between food additives; sorbic acid and sodium nitrite. Osawa T; Ishibashi H; Namiki M; Kada T Biochem Biophys Res Commun; 1980 Jul; 95(2):835-41. PubMed ID: 6998470 [No Abstract] [Full Text] [Related]
12. Effect of sodium nitrite and sodium nitrate on botulinal toxin production and nitrosamine formation in wieners. Hustad GO; Cerveny JG; Trenk H; Deibel RH; Kautter DA; Fazio T; Johnston RW; Kolari OE Appl Microbiol; 1973 Jul; 26(1):22-6. PubMed ID: 4580194 [TBL] [Abstract][Full Text] [Related]
13. Iron and the antibotulinal efficacy of nitrite. Tompkin RB; Christiansen LN; Shaparis AB Appl Environ Microbiol; 1979 Feb; 37(2):351-3. PubMed ID: 107856 [TBL] [Abstract][Full Text] [Related]
14. Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats. Pierson MD; Smoot LA Crit Rev Food Sci Nutr; 1982; 17(2):141-87. PubMed ID: 6751698 [TBL] [Abstract][Full Text] [Related]
15. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling. Redondo-Solano M; Valenzuela-Martinez C; Cassada DA; Snow DD; Juneja VK; Burson DE; Thippareddi H Food Microbiol; 2013 Sep; 35(2):108-15. PubMed ID: 23664261 [TBL] [Abstract][Full Text] [Related]
16. Effect of sodium nitrite on toxin production by Clostridium botulinum in bacon. Christiansen LN; Tompkin RB; Shaparis AB; Kueper TV; Johnston RW; Kautter DA; Kolari OJ Appl Microbiol; 1974 Apr; 27(4):733-7. PubMed ID: 4596753 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of type A and type B (proteolytic) Clostridium botulinum by sorbic acid. Lund BM; George SM; Franklin JG Appl Environ Microbiol; 1987 May; 53(5):935-41. PubMed ID: 3300545 [TBL] [Abstract][Full Text] [Related]
18. Quantifying the effect of sorbic acid, heat and combination of both on germination and outgrowth of Bacillus subtilis spores at single cell resolution. Pandey R; Pieper GH; Ter Beek A; Vischer NO; Smelt JP; Manders EM; Brul S Food Microbiol; 2015 Dec; 52():88-96. PubMed ID: 26338121 [TBL] [Abstract][Full Text] [Related]
19. Influence of reduced levels or suppression of sodium nitrite on the outgrowth and toxinogenesis of psychrotrophic Clostridium botulinum Group II type B in cooked ham. Lebrun S; Van Nieuwenhuysen T; Crèvecoeur S; Vanleyssem R; Thimister J; Denayer S; Jeuge S; Daube G; Clinquart A; Fremaux B Int J Food Microbiol; 2020 Dec; 334():108853. PubMed ID: 32932195 [TBL] [Abstract][Full Text] [Related]
20. Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners. Bowen VG; Cerveny JG; Deibel RH Appl Microbiol; 1974 Mar; 27(3):605-6. PubMed ID: 4596392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]