These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 384904)

  • 21. Effect of prior refrigeration on botulinal outgrowth in perishable canned cured meat when temperature abused.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 May; 35(5):863-6. PubMed ID: 350155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Causes of variation in botulinal inhibition in perishable canned cured meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 May; 35(5):886-9. PubMed ID: 350156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of toxigenesis of group II (nonproteolytic) Clostridium botulinum type B in meat products by using a reduced level of nitrite.
    Keto-Timonen R; Lindström M; Puolanne E; Niemistö M; Korkeala H
    J Food Prot; 2012 Jul; 75(7):1346-9. PubMed ID: 22980023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing nitrite inhibition of Clostridium botulinum with isoascorbate in perishable canned cured meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 Jan; 35(1):59-61. PubMed ID: 341810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth and toxin production by Clostridium botulinum in moldy tomato juice.
    Huhtanen CN; Naghski J; Custer CS; Russell RW
    Appl Environ Microbiol; 1976 Nov; 32(5):711-5. PubMed ID: 10844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sister chromatid exchanges and micronuclei formations induced by sorbic acid and sorbic acid-nitrite in vivo in mice.
    Mukherjee A; Giri AK; Talukder G; Sharma A
    Toxicol Lett; 1988 Jul; 42(1):47-53. PubMed ID: 3388447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of sorbic acid and sorbic acid-nitrite in vivo on bone marrow chromosomes of mice.
    Banerjee TS; Giri AK
    Toxicol Lett; 1986 May; 31(2):101-6. PubMed ID: 3715920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of clostridial ferredoxin and pyruvate-ferredoxin oxidoreductase by sodium nitrite.
    Carpenter CE; Reddy DS; Cornforth DP
    Appl Environ Microbiol; 1987 Mar; 53(3):549-52. PubMed ID: 3555332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth from spores of Clostridium perfringens in the presence of sodium nitrite.
    Labbe RG; Duncan CL
    Appl Microbiol; 1970 Feb; 19(2):353-9. PubMed ID: 4314380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of NaCl, NaNO2 and oxygen on the germination and growth of Bacillus licheniformis, a spoilage organism of chub-packed luncheon meat.
    Bell RG; De Lacy KM
    J Appl Bacteriol; 1984 Dec; 57(3):523-30. PubMed ID: 6530382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emulsified and Nanoemulsified Essential Oils in the Control of
    Junqueira Pinelli J; Sousa Guimarães A; Suela Silva M; Silveira Junqueira de Moraes T; Carlota Gonçalves M; Hilsdorf Piccoli R
    Foodborne Pathog Dis; 2024 May; 21(5):339-352. PubMed ID: 38422213
    [No Abstract]   [Full Text] [Related]  

  • 32. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S; Paredes-Sabja D; Torres JA; Sarker MR
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The inhibitory effects of sorbate and benzoate against Clostridium perfringens type A isolates.
    Alnoman M; Udompijitkul P; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2015 Jun; 48():89-98. PubMed ID: 25790996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The combined effect of incubation temperature, pH and sorbic acid on the probability of growth of non-proteolytic, type B Clostridium botulinum.
    Lund BM; Graham AF; George SM; Brown D
    J Appl Bacteriol; 1990 Oct; 69(4):481-92. PubMed ID: 2292514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A predictive growth model for Clostridium botulinum during cooling of cooked uncured ground beef.
    Juneja VK; Purohit AS; Golden M; Osoria M; Glass KA; Mishra A; Thippareddi H; Devkumar G; Mohr TB; Minocha U; Silverman M; Schaffner DW
    Food Microbiol; 2021 Feb; 93():103618. PubMed ID: 32912576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CHEMICAL SENSITIZATION OF CLOSTRIDIUM BOTULINUM SPORES TO RADIATION IN MEAT.
    KRABBENHOFT KL; CORLETT DA; ANDERSON AW; ELLIKER PR
    Appl Microbiol; 1964 Sep; 12(5):424-7. PubMed ID: 14215973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth and germination of proteolytic Clostridium botulinum in vegetable-based media.
    Braconnier A; Broussolle V; Dargaignaratz C; Nguyen-The C; Carlin F
    J Food Prot; 2003 May; 66(5):833-9. PubMed ID: 12747693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Some N-acyl-D-amino acid derivatives having antibotulinal properties.
    Paquet A; Rayman K
    Can J Microbiol; 1987 Jul; 33(7):577-82. PubMed ID: 3311323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of the mutagenicity of sorbic acid-sodium nitrite reaction products produced in bacon-curing brines.
    Robach MC; DiFate VG; Adam K; Kier LD
    Food Cosmet Toxicol; 1980 Jun; 18(3):237-40. PubMed ID: 6998844
    [No Abstract]   [Full Text] [Related]  

  • 40. Inhibition of Clostridium botulinum in Model Reduced-Sodium Pasteurized Prepared Cheese Products.
    Glass KA; Mu M; LeVine B; Rossi F
    J Food Prot; 2017 Sep; 80(9):1478-1488. PubMed ID: 28786718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.