BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38490467)

  • 1. ASPTF: A computational tool to predict abiotic stress-responsive transcription factors in plants by employing machine learning algorithms.
    Pradhan UK; Mahapatra A; Naha S; Gupta A; Parsad R; Gahlaut V; Rath SN; Meher PK
    Biochim Biophys Acta Gen Subj; 2024 Jun; 1868(6):130597. PubMed ID: 38490467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ASLncR: a novel computational tool for prediction of abiotic stress-responsive long non-coding RNAs in plants.
    Pradhan UK; Meher PK; Naha S; Rao AR; Gupta A
    Funct Integr Genomics; 2023 Mar; 23(2):113. PubMed ID: 37000299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ASmiR: a machine learning framework for prediction of abiotic stress-specific miRNAs in plants.
    Pradhan UK; Meher PK; Naha S; Rao AR; Kumar U; Pal S; Gupta A
    Funct Integr Genomics; 2023 Mar; 23(2):92. PubMed ID: 36939943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo
    Meher PK; Begam S; Sahu TK; Gupta A; Kumar A; Kumar U; Rao AR; Singh KP; Dhankher OP
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ASRpro: A machine-learning computational model for identifying proteins associated with multiple abiotic stress in plants.
    Meher PK; Sahu TK; Gupta A; Kumar A; Rustgi S
    Plant Genome; 2024 Mar; 17(1):e20259. PubMed ID: 36098562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ProkDBP: Toward more precise identification of prokaryotic DNA binding proteins.
    Pradhan UK; Meher PK; Naha S; Das R; Gupta A; Parsad R
    Protein Sci; 2024 Jun; 33(6):e5015. PubMed ID: 38747369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intelligent model for prediction of abiotic stress-responsive microRNAs in plants using statistical moments based features and ensemble approaches.
    Naseem A; Khan YD
    Methods; 2024 Aug; 228():65-79. PubMed ID: 38768931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RBPLight: a computational tool for discovery of plant-specific RNA-binding proteins using light gradient boosting machine and ensemble of evolutionary features.
    Pradhan UK; Meher PK; Naha S; Pal S; Gupta S; Gupta A; Parsad R
    Brief Funct Genomics; 2023 Nov; 22(5):401-410. PubMed ID: 37158175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PlDBPred: a novel computational model for discovery of DNA binding proteins in plants.
    Pradhan UK; Meher PK; Naha S; Pal S; Gupta A; Parsad R
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36416116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-silico analysis and transformation of OsMYB48 transcription factor driven by CaMV35S promoter in model plant -
    Ahmad Y; Haider S; Iqbal J; Naseer S; Attia KA; Mohammed AA; Fiaz S; Mahmood T
    GM Crops Food; 2024 Dec; 15(1):130-149. PubMed ID: 38551174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of DREBs in regulation of abiotic stress responses in plants.
    Lata C; Prasad M
    J Exp Bot; 2011 Oct; 62(14):4731-48. PubMed ID: 21737415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress.
    Khan SA; Li MZ; Wang SM; Yin HJ
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29857524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RBProkCNN: Deep learning on appropriate contextual evolutionary information for RNA binding protein discovery in prokaryotes.
    Pradhan UK; Naha S; Das R; Gupta A; Parsad R; Meher PK
    Comput Struct Biotechnol J; 2024 Dec; 23():1631-1640. PubMed ID: 38660008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa.
    Saha G; Park JI; Jung HJ; Ahmed NU; Kayum MA; Kang JG; Nou IS
    Plant Physiol Biochem; 2015 Jul; 92():92-104. PubMed ID: 25931321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-Based Prediction with Feature Representation Learning and Biological Function Analysis of Channel Proteins.
    Chen Z; Jiao S; Zhao D; Hesham AE; Zou Q; Xu L; Sun M; Zhang L
    Front Biosci (Landmark Ed); 2022 Jun; 27(6):177. PubMed ID: 35748253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype.
    Almeida DM; Gregorio GB; Oliveira MM; Saibo NJ
    Plant Mol Biol; 2017 Jan; 93(1-2):61-77. PubMed ID: 27766460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Functions of NAC transcription factors in biotic and abiotic stress responses in plants].
    Sun LJ; Li DY; Zhang HJ; Song FM
    Yi Chuan; 2012 Aug; 34(8):993-1002. PubMed ID: 22917904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum).
    Zhu M; Chen G; Zhang J; Zhang Y; Xie Q; Zhao Z; Pan Y; Hu Z
    Plant Cell Rep; 2014 Nov; 33(11):1851-63. PubMed ID: 25063324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NAC transcription factors in plant abiotic stress responses.
    Nakashima K; Takasaki H; Mizoi J; Shinozaki K; Yamaguchi-Shinozaki K
    Biochim Biophys Acta; 2012 Feb; 1819(2):97-103. PubMed ID: 22037288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.