These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38490739)

  • 61. Synergic chitin degradation by Streptomyces sp. SCUT-3 chitinases and their applications in chitinous waste recycling and pathogenic fungi biocontrol.
    Wang JL; Chen YC; Deng JJ; Mo ZQ; Zhang MS; Yang ZD; Zhang JR; Li YW; Dan XM; Luo XC
    Int J Biol Macromol; 2023 Jan; 225():987-996. PubMed ID: 36403764
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fish By-Product Collagen Extraction Using Different Methods and Their Application.
    Gaikwad S; Kim MJ
    Mar Drugs; 2024 Jan; 22(2):. PubMed ID: 38393031
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biotechnological aspects of chitinolytic enzymes: a review.
    Dahiya N; Tewari R; Hoondal GS
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):773-82. PubMed ID: 16249876
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Exploitation of biological wastes for the production of value-added hydrolases by Streptomyces sp. MSWC1 isolated from municipal solid waste compost.
    Mokni-Tlili S; Ben Abdelmalek I; Jedidi N; Belghith H; Gargouri A; Abdennaceur H; Marzouki MN
    Waste Manag Res; 2010 Sep; 28(9):828-37. PubMed ID: 20022900
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Digestive chitinolytic activity in marine fishes of Monterey Bay, California.
    Gutowska MA; Drazen JC; Robison BH
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Nov; 139(3):351-8. PubMed ID: 15556391
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates.
    Borges S; Odila J; Voss G; Martins R; Rosa A; Couto JA; Almeida A; Pintado M
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770822
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Potential of chicken by-products as sources of useful biological resources.
    Lasekan A; Abu Bakar F; Hashim D
    Waste Manag; 2013 Mar; 33(3):552-65. PubMed ID: 22985619
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Environmental impact and diversity of protease-producing bacteria in areas of leather tannery effluents of Sialkot, Pakistan.
    Butt MQ; Zeeshan N; Ashraf NM; Akhtar MA; Ashraf H; Afroz A; Shaheen A; Naz S
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):54842-54851. PubMed ID: 34021452
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A transglycosylating chitinase from Chitiniphilus shinanonensis (CsChiL) hydrolyzes chitin in a processive manner.
    Bhuvanachandra B; Podile AR
    Int J Biol Macromol; 2020 Feb; 145():1-10. PubMed ID: 31857159
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biochemical characterization of a GH19 chitinase from Streptomyces alfalfae and its applications in crystalline chitin conversion and biocontrol.
    Lv C; Gu T; Ma R; Yao W; Huang Y; Gu J; Zhao G
    Int J Biol Macromol; 2021 Jan; 167():193-201. PubMed ID: 33259839
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Production of chitinase from shellfish waste by Pseudomonas aeruginosa K-187.
    Wang SL; Chiou SH; Chang WT
    Proc Natl Sci Counc Repub China B; 1997 Apr; 21(2):71-8. PubMed ID: 9276970
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enzymes from Fishery and Aquaculture Waste: Research Trends in the Era of Artificial Intelligence and Circular Bio-Economy.
    Khiari Z
    Mar Drugs; 2024 Sep; 22(9):. PubMed ID: 39330292
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Broad-Specificity Chitinase from
    Xie XH; Fu X; Yan XY; Peng WF; Kang LX
    Mar Drugs; 2021 Jun; 19(7):. PubMed ID: 34201595
    [No Abstract]   [Full Text] [Related]  

  • 74. Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7.
    Itoh T; Hibi T; Fujii Y; Sugimoto I; Fujiwara A; Suzuki F; Iwasaki Y; Kim JK; Taketo A; Kimoto H
    Appl Environ Microbiol; 2013 Dec; 79(23):7482-90. PubMed ID: 24077704
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.
    Mishra GK
    Recent Pat Biotechnol; 2017; 11(3):188-196. PubMed ID: 28116999
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Characterisation and partial purification of proteolytic enzymes from sardine by-products to obtain concentrated hydrolysates.
    Castro-Ceseña AB; del Pilar Sánchez-Saavedra M; Márquez-Rocha FJ
    Food Chem; 2012 Nov; 135(2):583-9. PubMed ID: 22868132
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.
    Chalamaiah M; Dinesh Kumar B; Hemalatha R; Jyothirmayi T
    Food Chem; 2012 Dec; 135(4):3020-38. PubMed ID: 22980905
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chitinous material bioconversion by three new chitinases from the yeast Mestchnikowia pulcherrima.
    Minguet-Lobato M; Cervantes FV; Míguez N; Plou FJ; Fernández-Lobato M
    Microb Cell Fact; 2024 Jan; 23(1):31. PubMed ID: 38245740
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Current and potential uses of bioactive molecules from marine processing waste.
    Suleria HA; Masci P; Gobe G; Osborne S
    J Sci Food Agric; 2016 Mar; 96(4):1064-7. PubMed ID: 26332893
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimization of proteins and minerals removal from shrimp shells to produce highly acetylated chitin.
    Younes I; Hajji S; Rinaudo M; Chaabouni M; Jellouli K; Nasri M
    Int J Biol Macromol; 2016 Mar; 84():246-53. PubMed ID: 26299708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.