BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 38490949)

  • 41. [Abnormalities of synaptogenesis in autism. Pathogenic and therapeutic implications].
    García-Peñas JJ; Domínguez-Carral J; Pereira-Bezanilla E
    Rev Neurol; 2012 Feb; 54 Suppl 1():S41-50. PubMed ID: 22374772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cortical neurogenesis in fragile X syndrome.
    Castrén ML
    Front Biosci (Schol Ed); 2016 Jan; 8(1):160-8. PubMed ID: 26709905
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hyperexcitability in the Olfactory Bulb and Impaired Fine Odor Discrimination in the
    Kuruppath P; Xue L; Pouille F; Jones ST; Schoppa NE
    J Neurosci; 2023 Nov; 43(48):8243-8258. PubMed ID: 37788940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging pharmacotherapies for neurodevelopmental disorders.
    Wetmore DZ; Garner CC
    J Dev Behav Pediatr; 2010 Sep; 31(7):564-81. PubMed ID: 20814256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning.
    Sakamoto M; Ieki N; Miyoshi G; Mochimaru D; Miyachi H; Imura T; Yamaguchi M; Fishell G; Mori K; Kageyama R; Imayoshi I
    J Neurosci; 2014 Apr; 34(17):5788-99. PubMed ID: 24760839
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of School Closures due to COVID-19 on Children with Neurodevelopmental Disorders in Japan.
    Kawaoka N; Ohashi K; Fukuhara S; Miyachi T; Asai T; Imaeda M; Saitoh S
    J Autism Dev Disord; 2022 May; 52(5):2149-2155. PubMed ID: 34081298
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron.
    Galliano E; Franzoni E; Breton M; Chand AN; Byrne DJ; Murthy VN; Grubb MS
    Elife; 2018 Apr; 7():. PubMed ID: 29676260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gli3 Regulates Vomeronasal Neurogenesis, Olfactory Ensheathing Cell Formation, and GnRH-1 Neuronal Migration.
    Taroc EZM; Naik AS; Lin JM; Peterson NB; Keefe DL; Genis E; Fuchs G; Balasubramanian R; Forni PE
    J Neurosci; 2020 Jan; 40(2):311-326. PubMed ID: 31767679
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potential Role of Microtubule Stabilizing Agents in Neurodevelopmental Disorders.
    Bonini SA; Mastinu A; Ferrari-Toninelli G; Memo M
    Int J Mol Sci; 2017 Jul; 18(8):. PubMed ID: 28933765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preferences for the research use of electronic health records among young adults with fragile X syndrome or autism spectrum disorder.
    Wagner L; Frisch M; Turner-Brown L; Andrews S; Edwards A; Moultrie R; Alvarez Rivas A; Wheeler A; Raspa M
    Disabil Health J; 2020 Oct; 13(4):100927. PubMed ID: 32360031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments.
    Zhang X; Li Z; Liu Y; Gai Z
    Int J Med Sci; 2021; 18(2):459-473. PubMed ID: 33390815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene Transfer Therapy for Neurodevelopmental Disorders.
    Ozlu C; Bailey RM; Sinnett S; Goodspeed KD
    Dev Neurosci; 2021; 43(3-4):230-240. PubMed ID: 33882495
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling.
    Mellios N; Feldman DA; Sheridan SD; Ip JPK; Kwok S; Amoah SK; Rosen B; Rodriguez BA; Crawford B; Swaminathan R; Chou S; Li Y; Ziats M; Ernst C; Jaenisch R; Haggarty SJ; Sur M
    Mol Psychiatry; 2018 Apr; 23(4):1051-1065. PubMed ID: 28439102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prenatal Environment and Neurodevelopmental Disorders.
    Doi M; Usui N; Shimada S
    Front Endocrinol (Lausanne); 2022; 13():860110. PubMed ID: 35370942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinct Basal Metabolism in Three Mouse Models of Neurodevelopmental Disorders.
    Menzies C; Naz S; Patten D; Alquier T; Bennett BM; Lacoste B
    eNeuro; 2021; 8(2):. PubMed ID: 33820803
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Clinical versus automated assessments of morphological variants in twins with and without neurodevelopmental disorders.
    Myers L; Anderlid BM; Nordgren A; Lundin K; Kuja-Halkola R; Tammimies K; Bölte S
    Am J Med Genet A; 2020 May; 182(5):1177-1189. PubMed ID: 32162839
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Early Life Stress, Hormones, and Neurodevelopmental Disorders.
    Makris G; Eleftheriades A; Pervanidou P
    Horm Res Paediatr; 2023; 96(1):17-24. PubMed ID: 35259742
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of GABAergic Inputs Is Not Altered in Early Maturation of Adult Born Dentate Granule Neurons in Fragile X Mice.
    Remmers CL; Contractor A
    eNeuro; 2018; 5(6):. PubMed ID: 30627633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. α-Synuclein Pathology and Reduced Neurogenesis in the Olfactory System Affect Olfaction in a Mouse Model of Parkinson's Disease.
    Martin-Lopez E; Vidyadhara DJ; Liberia T; Meller SJ; Harmon LE; Hsu RM; Spence N; Brennan B; Han K; Yücel B; Chandra SS; Greer CA
    J Neurosci; 2023 Feb; 43(6):1051-1071. PubMed ID: 36596700
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders.
    Chiocchetti AG; Haslinger D; Stein JL; de la Torre-Ubieta L; Cocchi E; Rothämel T; Lindlar S; Waltes R; Fulda S; Geschwind DH; Freitag CM
    Transl Psychiatry; 2016 Aug; 6(8):e864. PubMed ID: 27483382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.