These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38491048)

  • 1. Color-switching hydrogels as integrated microfluidic pressure sensors.
    Ducloué L; Haque MA; Goral M; Ilyas M; Gong JP; Lindner A
    Sci Rep; 2024 Mar; 14(1):6333. PubMed ID: 38491048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications.
    Escudero P; Yeste J; Pascual-Izarra C; Villa R; Alvarez M
    Sci Rep; 2019 Mar; 9(1):3259. PubMed ID: 30824807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic membrane interferometer: An imaging method for measuring microfluidic pressure and flow rate simultaneously on a chip.
    Song W; Psaltis D
    Biomicrofluidics; 2011 Dec; 5(4):44110-4411011. PubMed ID: 22662062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels.
    Yue Y; Kurokawa T; Haque MA; Nakajima T; Nonoyama T; Li X; Kajiwara I; Gong JP
    Nat Commun; 2014 Aug; 5():4659. PubMed ID: 25130669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces.
    Shay T; Dickey MD; Velev OD
    Lab Chip; 2017 Feb; 17(4):710-716. PubMed ID: 28150821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip pressure sensor using single-layer concentric chambers.
    Tsai CH; Kaneko M
    Biomicrofluidics; 2016 Mar; 10(2):024116. PubMed ID: 27076864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex pressure measurement in microsystems using volume displacement of particle suspensions.
    Chung K; Lee H; Lu H
    Lab Chip; 2009 Dec; 9(23):3345-53. PubMed ID: 19904399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-Network Hydrogel-Based Photonic Crystal Sensor for Mechanical Force Naked Eye Sensing and Its Application in Medical Compressive or Stretchy Instruments.
    Liu S; Li Q; Wang J; Wang X; Mbola NM; Meng Z; Xue M
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2192-2203. PubMed ID: 36575052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.
    Lv C; Xia H; Guan W; Sun YL; Tian ZN; Jiang T; Wang YS; Zhang YL; Chen QD; Ariga K; Yu YD; Sun HB
    Sci Rep; 2016 Jan; 6():19801. PubMed ID: 26823292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic In-Situ Measurement of Poisson's Ratio of Hydrogels.
    Cappello J; d'Herbemont V; Lindner A; du Roure O
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32204340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crack-Enhanced Microfluidic Stretchable E-Skin Sensor.
    Ho DH; Song R; Sun Q; Park WH; Kim SY; Pang C; Kim DH; Kim SY; Lee J; Cho JH
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44678-44686. PubMed ID: 29205030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems.
    Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 May; 11(10):1740-6. PubMed ID: 21451820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inductively coupled microfluidic pressure meter for in vivo monitoring of cerebrospinal fluid shunt function.
    Song SH; Gillies GT; Begley MR; Utz M; Broaddus WC
    J Med Eng Technol; 2012 Apr; 36(3):156-62. PubMed ID: 22316101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterning Biological Gels for 3D Cell Culture inside Microfluidic Devices by Local Surface Modification through Laminar Flow Patterning.
    Loessberg-Zahl J; Beumer J; van den Berg A; Eijkel JCT; van der Meer AD
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33339092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.
    Cheri MS; Latifi H; Sadeghi J; Moghaddam MS; Shahraki H; Hajghassem H
    Analyst; 2014 Jan; 139(2):431-8. PubMed ID: 24291805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures.
    Lee TA; Liao WH; Wu YF; Chen YL; Tung YC
    Anal Chem; 2018 Feb; 90(3):2317-2325. PubMed ID: 29293313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Pressure Sensor Using Porous Natural Polymer Hydrogel Elastomers with High Sensitivity over a Wide Sensing Range.
    Xiao F; Jin S; Zhang W; Zhang Y; Zhou H; Huang Y
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.