These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38491125)

  • 1. Asymmetric metamaterial sandwich structure with NIM characteristics for THz imaging application.
    Ramachandran T; Faruque MRI; Al-Mugren KS
    Sci Rep; 2024 Mar; 14(1):6258. PubMed ID: 38491125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Compact Metamaterial-Based Double-Negative/Near-Zero Index Resonator for 6G Terahertz Wireless Applications.
    Musaed AA; Al-Bawri SS; Islam MT; Al-Gburi AJA; Singh MJ
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetric left-handed split ring resonator metamaterial design for terahertz frequency applications.
    Ramachandran T; Faruque MRI; Al-Mugren KS
    Sci Rep; 2023 Dec; 13(1):21828. PubMed ID: 38071245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of Radar Cross Section by Adopting Symmetrical Coding Metamaterial Design for Terahertz Frequency Applications.
    Ramachandran T; Faruque MRI; Singh MSJ; Khandaker MU; Salman M; Youssef AAF
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of double-layer metamaterial with high effective medium ratio values for S- and C-band applications.
    Sifat R; Faruque MRI; Ramachandran T; Abdullah M; Islam MT; Al-Mugren KS
    Heliyon; 2024 Jan; 10(1):e23851. PubMed ID: 38192815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact Multi-Layered Symmetric Metamaterial Design Structure for Microwave Frequency Applications.
    Ramachandran T; Faruque MRI; Singh MSJ; Al-Mugren KS
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetric square shaped metamaterial structure with quintuple resonance frequencies for S, C, X and Ku band applications.
    Ramachandran T; Faruque MRI; Islam MT
    Sci Rep; 2021 Feb; 11(1):4270. PubMed ID: 33608595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable terahertz metamaterial absorber actuated by thermomechanical bimaterial microcantilevers.
    Xu J; Jia D; Liu Y; Tian Y; Yu X
    Opt Express; 2020 Mar; 28(7):10329-10336. PubMed ID: 32225620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application.
    Lai WH; Li B; Fu SH; Lin YS
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Analysis of Coding and Tailored Metamaterial for Terahertz Frequency Applications.
    Ramachandran T; Faruque MRI; Islam MT; Khandaker MU; Alqahtani A; Bradley DA
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realization of absorption, filtering, and sensing in a single metamaterial structure combined with functional materials.
    Feng QY; Yan DX; Li XJ; Li JN
    Appl Opt; 2022 May; 61(15):4336-4343. PubMed ID: 36256270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin terahertz-wave phase shifter by flexible film metamaterial with high transmission.
    Han Z; Ohno S; Tokizane Y; Nawata K; Notake T; Takida Y; Minamide H
    Opt Express; 2017 Dec; 25(25):31186-31196. PubMed ID: 29245795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Tunable Terahertz Metamaterial Sensor with Single- and Dual-Resonance Characteristic.
    Yang J; Lin YS
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractal interwoven resonator based penta-band metamaterial absorbers for THz sensing and imaging.
    Ozpinar H; Aksimsek S
    Sci Rep; 2022 Nov; 12(1):19758. PubMed ID: 36396852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A Double Split Ring Terahertz Filter on Ploymide Substrate].
    He J; Zhang TJ; Xiong W; Zhang B; He T; Shen JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3050-3. PubMed ID: 26978906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene.
    Li J; Liu Y; Chen Y; Chen W; Guo H; Wu Q; Li M
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and optimization of highly sensitive multi-band terahertz metamaterial biosensor for coronaviruses detection.
    El-Wasif Z; Ismail T; Hamdy O
    Opt Quantum Electron; 2023; 55(7):604. PubMed ID: 37215398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Dual-Band High-Sensitivity THz Metamaterial Sensor Based on Split Metal Stacking Ring.
    Lu X; Ge H; Jiang Y; Zhang Y
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz Fresnel-zone-plate thin-film lens based on a high-transmittance double-layer metamaterial phase shifter.
    Han Z; Takida Y; Ohno S; Minamide H
    Opt Express; 2022 May; 30(11):18730-18742. PubMed ID: 36221668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.