BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 38491201)

  • 21. [Preparation and anti-cancer activity in vitro of curcumin loaded mesoporous silica nanoparticle].
    He LL; Gu J
    Zhongguo Zhong Yao Za Zhi; 2015 Nov; 40(21):4189-93. PubMed ID: 27071254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid curcumin-phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer.
    Liu Y; Huang P; Hou X; Yan F; Jiang Z; Shi J; Xie X; Shen J; Fan Q; Wang Z; Feng N
    Int J Nanomedicine; 2019; 14():3311-3330. PubMed ID: 31190795
    [No Abstract]   [Full Text] [Related]  

  • 23. Hybrid Mesoporous-Microporous Nanocarriers for Overcoming Multidrug Resistance by Sequential Drug Delivery.
    Wang L; Guan H; Wang Z; Xing Y; Zhang J; Cai K
    Mol Pharm; 2018 Jul; 15(7):2503-2512. PubMed ID: 29768014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Curcumin a Natural Phenol and Its Therapeutic Role in Cancer and Photodynamic Therapy: A Review.
    Kah G; Chandran R; Abrahamse H
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36839961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperbaric oxygen enhanced the chemotherapy of mitochondrial targeting molecule IR-780 in bladder cancer.
    Shen C; Yue X; Dai L; Wang J; Li J; Fang Q; Zhi Y; Shi C; Li W
    J Cancer Res Clin Oncol; 2023 Feb; 149(2):683-699. PubMed ID: 36436092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Curcumin and Its Analogs in Non-Small Cell Lung Cancer Treatment: Challenges and Expectations.
    Tang C; Liu J; Yang C; Ma J; Chen X; Liu D; Zhou Y; Zhou W; Lin Y; Yuan X
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36358986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Selenium-Substituted Heptamethine Cyanine Photosensitizer for Near-Infrared Photodynamic Therapy.
    Sun J; Feng E; Shao Y; Lv F; Wu Y; Tian J; Sun H; Song F
    Chembiochem; 2022 Nov; 23(22):e202200421. PubMed ID: 36149045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cancer treatment and survivorship statistics, 2022.
    Miller KD; Nogueira L; Devasia T; Mariotto AB; Yabroff KR; Jemal A; Kramer J; Siegel RL
    CA Cancer J Clin; 2022 Sep; 72(5):409-436. PubMed ID: 35736631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Effectors of Photodynamic Therapy-Mediated Resistance to Cancer Cells.
    Aniogo EC; George BP; Abrahamse H
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34947979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polylactide nanoparticles encapsulating indocyanine green for photothermal therapy of prostate cancer cells.
    Güney Akkurt M; Gülsoy M
    Photodiagnosis Photodyn Ther; 2022 Mar; 37():102693. PubMed ID: 34921985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near infrared light activated upconversion nanoparticles (UCNP) based photodynamic therapy of prostate cancers: An in vitro study.
    Güleryüz B; Ünal U; Gülsoy M
    Photodiagnosis Photodyn Ther; 2021 Dec; 36():102616. PubMed ID: 34740839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic chemo-photothermal cancer therapy of pH-responsive polymeric nanoparticles loaded IR825 and DTX with charge-reversal property.
    Wang X; Gu Y; Li Q; Xu Y; Shi Y; Wang Z; Xia M; Li J; Wang D
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 2):112164. PubMed ID: 34735859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liposomal IR-780 as a Highly Stable Nanotheranostic Agent for Improved Photothermal/Photodynamic Therapy of Brain Tumors by Convection-Enhanced Delivery.
    Lu YJ; S AT; Chuang CC; Chen JP
    Cancers (Basel); 2021 Jul; 13(15):. PubMed ID: 34359590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Obstacles and opportunities in a forward vision for cancer nanomedicine.
    de Lázaro I; Mooney DJ
    Nat Mater; 2021 Nov; 20(11):1469-1479. PubMed ID: 34226688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement.
    Zhang G; Cheng W; Du L; Xu C; Li J
    J Nanobiotechnology; 2021 Jan; 19(1):9. PubMed ID: 33407570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyphosphoester-Based Nanocarrier for Combined Radio-Photothermal Therapy of Breast Cancer.
    Zhang B; Xu C; Sun C; Yu C
    ACS Biomater Sci Eng; 2019 Apr; 5(4):1868-1877. PubMed ID: 33405560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and initial characterization of human glioblastoma cells resistant to photodynamic therapy.
    Vilchez ML; Rodríguez LB; Palacios RE; Prucca CG; Caverzán MD; Caputto BL; Rivarola VA; Milla Sanabria LN
    Photodiagnosis Photodyn Ther; 2021 Mar; 33():102097. PubMed ID: 33232818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The microneedles carrying cisplatin and IR820 to perform synergistic chemo-photodynamic therapy against breast cancer.
    Fu JJ; Li CW; Liu Y; Chen MY; Zhang Q; Yu XY; Wu B; Li JX; Du LR; Dang YY; Wu D; Wei MY; Lin ZQ; Lei XP
    J Nanobiotechnology; 2020 Oct; 18(1):146. PubMed ID: 33076924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical development and potential of photothermal and photodynamic therapies for cancer.
    Li X; Lovell JF; Yoon J; Chen X
    Nat Rev Clin Oncol; 2020 Nov; 17(11):657-674. PubMed ID: 32699309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative Stress and Photodynamic Therapy of Skin Cancers: Mechanisms, Challenges and Promising Developments.
    Allegra A; Pioggia G; Tonacci A; Musolino C; Gangemi S
    Antioxidants (Basel); 2020 May; 9(5):. PubMed ID: 32455998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.