These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38491302)

  • 1. Effect on functional outcome of robotic assisted rehabilitation versus conventional rehabilitation in patients with complete spinal cord injury: a prospective comparative study.
    Khande CK; Verma V; Regmi A; Ifthekar S; Sudhakar PV; Sethy SS; Kandwal P; Sarkar B
    Spinal Cord; 2024 May; 62(5):228-236. PubMed ID: 38491302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.
    Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL
    Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Granulocyte-colony stimulating factor administration for neurological improvement in patients with postrehabilitation chronic incomplete traumatic spinal cord injuries: a double-blind randomized controlled clinical trial.
    Derakhshanrad N; Saberi H; Yekaninejad MS; Joghataei MT; Sheikhrezaei A
    J Neurosurg Spine; 2018 Jul; 29(1):97-107. PubMed ID: 29701561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study.
    Xiang XN; Ding MF; Zong HY; Liu Y; Cheng H; He CQ; He HC
    Spinal Cord; 2020 Jul; 58(7):787-794. PubMed ID: 32034295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury.
    Mıdık M; Paker N; Buğdaycı D; Mıdık AC
    Turk J Phys Med Rehabil; 2020 Mar; 66(1):54-59. PubMed ID: 32318675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Enhances Recovery for Persons with Spinal Cord Injury-A Pilot Randomized Controlled Trial.
    Tsai CY; Weinrauch WJ; Manente N; Huang V; Bryce TN; Spungen AM
    J Neurotrauma; 2024 Sep; 41(17-18):2089-2100. PubMed ID: 38661533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor training using a robotic device in patients with subacute spinal cord injury.
    Schwartz I; Sajina A; Neeb M; Fisher I; Katz-Luerer M; Meiner Z
    Spinal Cord; 2011 Oct; 49(10):1062-7. PubMed ID: 21625239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in activity after a complete spinal cord injury as measured by the Spinal Cord Independence Measure II (SCIM II).
    Wirth B; van Hedel HJ; Kometer B; Dietz V; Curt A
    Neurorehabil Neural Repair; 2008; 22(3):279-87. PubMed ID: 18496904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat(®) gait training.
    Kumru H; Murillo N; Benito-Penalva J; Tormos JM; Vidal J
    Neurosci Lett; 2016 May; 620():143-7. PubMed ID: 27040426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Walking-related outcomes for individuals with traumatic and non-traumatic spinal cord injury inform physical therapy practice.
    Marinho AR; Flett HM; Craven C; Ottensmeyer CA; Parsons D; Verrier MC
    J Spinal Cord Med; 2012 Sep; 35(5):371-81. PubMed ID: 23031174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury.
    Shin JC; Kim JY; Park HK; Kim NY
    Ann Rehabil Med; 2014 Dec; 38(6):719-25. PubMed ID: 25566469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of robotic-assisted gait training on motor function and walking ability in children with thoracolumbar incomplete spinal cord injury.
    Ma TT; Zhang Q; Zhou TT; Zhang YQ; He Y; Li SJ; Liu QJ
    NeuroRehabilitation; 2022; 51(3):499-508. PubMed ID: 35964210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early term effects of robotic assisted gait training on ambulation and functional capacity in patients with spinal cord injury.
    Yıldırım MA; Öneş K; Gökşenoğlu G
    Turk J Med Sci; 2019 Jun; 49(3):838-843. PubMed ID: 31134784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury.
    Lima C; Escada P; Pratas-Vital J; Branco C; Arcangeli CA; Lazzeri G; Maia CA; Capucho C; Hasse-Ferreira A; Peduzzi JD
    Neurorehabil Neural Repair; 2010 Jan; 24(1):10-22. PubMed ID: 19794133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait rehabilitation in persons with spinal cord injury using innovative technologies: an observational study.
    Stampacchia G; Olivieri M; Rustici A; D'Avino C; Gerini A; Mazzoleni S
    Spinal Cord; 2020 Sep; 58(9):988-997. PubMed ID: 32251368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of Volitional Motor Control and Overground Walking in Participants With Chronic Clinically Motor Complete Spinal Cord Injury: Restoration of Rehabilitative Function With Epidural Spinal Stimulation (RESTORES) Trial-A Preliminary Study.
    Wan KR; Ng ZYV; Wee SK; Fatimah M; Lui W; Phua MW; So QYR; Maszczyk TK; Premchand B; Saffari SE; Ker RXJ; Ng WH
    J Neurotrauma; 2024 May; 41(9-10):1146-1162. PubMed ID: 38115642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in activity after a complete spinal cord injury as measured by the Spinal Cord Independence Measure II (SCIM II).
    Wirth B; van Hedel HJ; Kometer B; Dietz V; Curt A
    Neurorehabil Neural Repair; 2008; 22(2):145-53. PubMed ID: 17761810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.