These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38491496)

  • 1. Are the ground reaction forces altered by the curve and with the increasing sprinting velocity?
    Millot B; Pradon D; Cecchelli G; Blache P; Arnould A; Dinu D; Slawinski J
    Scand J Med Sci Sports; 2024 Mar; 34(3):e14602. PubMed ID: 38491496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Center of mass velocity comparison using a whole body magnetic inertial measurement unit system and force platforms in well trained sprinters in straight-line and curve sprinting.
    Millot B; Blache P; Dinu D; Arnould A; Jusseaume J; Hanon C; Slawinski J
    Gait Posture; 2023 Jan; 99():90-97. PubMed ID: 36368241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Running patterns and force-velocity sprinting profiles in elite training young soccer players: A cross-sectional study.
    Zhang Q; Pommerell F; Owen A; Trama R; Martin C; Hautier CA
    Eur J Sport Sci; 2021 Dec; 21(12):1718-1726. PubMed ID: 33331801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal mechanical force-velocity profile for sprint acceleration performance.
    Samozino P; Peyrot N; Edouard P; Nagahara R; Jimenez-Reyes P; Vanwanseele B; Morin JB
    Scand J Med Sci Sports; 2022 Mar; 32(3):559-575. PubMed ID: 34775654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of fatigue on first stance phase kinetics during acceleration sprint running in professional football players.
    Wdowski MM; Clarke N; Eyre ELJ; Morris R; Noon M; Eustace SJ; Hankey J; Raymond LM; Richardson DL
    Sci Med Footb; 2021 May; 5(2):90-96. PubMed ID: 35077329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic demands of sprinting shift across the acceleration phase: Novel analysis of entire force waveforms.
    Colyer SL; Nagahara R; Salo AIT
    Scand J Med Sci Sports; 2018 Jul; 28(7):1784-1792. PubMed ID: 29630747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of Step Width with Accelerated Sprinting Performance and Ground Reaction Force.
    Nagahara R; Mizutani M; Matsuo A; Kanehisa H; Fukunaga T
    Int J Sports Med; 2017 Jul; 38(7):534-540. PubMed ID: 28482364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running.
    Macadam P; Nuell S; Cronin JB; Nagahara R; Uthoff AM; Graham SP; Tinwala F; Neville J
    Eur J Sport Sci; 2019 Sep; 19(8):1024-1031. PubMed ID: 30732539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic Sprint Asymmetries on a non-motorised Treadmill in Rugby Union Athletes.
    Brown SR; Cross MR; Girard O; Brocherie F; Samozino P; Morin JB
    Int J Sports Med; 2017 Nov; 38(13):1017-1022. PubMed ID: 28965343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetries of kinematics and kinetics in female and male sprinting.
    Nagahara R; Gleadhill S
    J Sports Med Phys Fitness; 2023 Aug; 63(8):891-898. PubMed ID: 37166253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force production during maximal effort bend sprinting: Theory vs reality.
    Churchill SM; Trewartha G; Bezodis IN; Salo AI
    Scand J Med Sci Sports; 2016 Oct; 26(10):1171-9. PubMed ID: 26408499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-stance phase force contributions to acceleration sprint performance in semi-professional soccer players.
    Wdowski MM; Gittoes MJR
    Eur J Sport Sci; 2020 Apr; 20(3):366-374. PubMed ID: 31167614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations to maximum running speed on flat curves.
    Chang YH; Kram R
    J Exp Biol; 2007 Mar; 210(Pt 6):971-82. PubMed ID: 17337710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-velocity profile changes with forearm wearable resistance during standing start sprinting.
    Macadam P; Mishra M; Feser EH; Uthoff AM; Cronin JB; Zois J; Nagahara R; Tinwala F
    Eur J Sport Sci; 2020 Aug; 20(7):915-919. PubMed ID: 31650888
    [No Abstract]   [Full Text] [Related]  

  • 16. Ratio of forces during sprint acceleration: A comparison of different calculation methods.
    Bezodis N; Colyer S; Nagahara R; Bayne H; Bezodis I; Morin JB; Murata M; Samozino P
    J Biomech; 2021 Oct; 127():110685. PubMed ID: 34450518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports.
    Mendiguchia J; Edouard P; Samozino P; Brughelli M; Cross M; Ross A; Gill N; Morin JB
    J Sports Sci; 2016; 34(6):535-41. PubMed ID: 26648237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal force production and multi-segment foot kinematics during the acceleration phase of bend sprinting.
    Judson LJ; Churchill SM; Barnes A; Stone JA; Brookes IGA; Wheat J
    Scand J Med Sci Sports; 2019 Oct; 29(10):1563-1571. PubMed ID: 31131939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower extremity kinematics of athletics curve sprinting.
    Alt T; Heinrich K; Funken J; Potthast W
    J Sports Sci; 2015; 33(6):552-60. PubMed ID: 25495196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design.
    Morin JB; Samozino P; Murata M; Cross MR; Nagahara R
    J Biomech; 2019 Sep; 94():82-87. PubMed ID: 31376978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.