These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38491568)

  • 21. Parameter space of experimental chaotic circuits with high-precision control parameters.
    de Sousa FF; Rubinger RM; Sartorelli JC; Albuquerque HA; Baptista MS
    Chaos; 2016 Aug; 26(8):083107. PubMed ID: 27586603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning Hamiltonian dynamics with reservoir computing.
    Zhang H; Fan H; Wang L; Wang X
    Phys Rev E; 2021 Aug; 104(2-1):024205. PubMed ID: 34525517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical cascaded reservoir computing for realization of dual-channel high-speed OTDM chaotic secure communication via four optically pumped VCSEL.
    Zhong D; Zhang J; Deng W; Hou P; Wu Q; Chen Y; Wang T; Hu Y; Deng F
    Opt Express; 2023 Jun; 31(13):21367-21388. PubMed ID: 37381237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction.
    Fry D; Deshmukh A; Chen SY; Rastunkov V; Markov V
    Sci Rep; 2023 Nov; 13(1):19326. PubMed ID: 37935730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transfer learning of chaotic systems.
    Guo Y; Zhang H; Wang L; Fan H; Xiao J; Wang X
    Chaos; 2021 Jan; 31(1):011104. PubMed ID: 33754764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quorum sensing via static coupling demonstrated by Chua's circuits.
    Singh H; Parmananda P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):040903. PubMed ID: 24229106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing.
    Cunillera A; Soriano MC; Fischer I
    Chaos; 2019 Nov; 29(11):113113. PubMed ID: 31779359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics.
    Jung J; Lee J; Song H
    Chaos; 2011 Mar; 21(1):013105. PubMed ID: 21456819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An approach to chaotic synchronization.
    Hramov AE; Koronovskii AA
    Chaos; 2004 Sep; 14(3):603-10. PubMed ID: 15446970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2Nā€‰+ā€‰1-scroll chaotic attractors system.
    Wang C; Liu X; Xia H
    Chaos; 2017 Mar; 27(3):033114. PubMed ID: 28364774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complete synchronization of the noise-perturbed Chua's circuits.
    Lin W; He Y
    Chaos; 2005 Jun; 15(2):23705. PubMed ID: 16035895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time series reconstructing using calibrated reservoir computing.
    Chen Y; Qian Y; Cui X
    Sci Rep; 2022 Sep; 12(1):16318. PubMed ID: 36175460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational Analysis of
    Marszalek W; Sadecki J; Walczak M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On prediction of chaotic dynamics in semiconductor lasers by reservoir computing.
    Li XZ; Yang B; Zhao S; Gu Y; Zhao M
    Opt Express; 2023 Nov; 31(24):40592-40603. PubMed ID: 38041355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models.
    Bagarinao E; Pakdaman K; Nomura T; Sato S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):1073-6. PubMed ID: 11969857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short- and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach.
    Doan NAK; Polifke W; Magri L
    Proc Math Phys Eng Sci; 2021 Sep; 477(2253):20210135. PubMed ID: 35153579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coherent regimes of mutually coupled Chua's circuits.
    Gomes Da Silva I; De Monte S; d'Ovidio F; Toral R; Mirasso CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036203. PubMed ID: 16605627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating system parameters from chaotic time series with synchronization optimized by a genetic algorithm.
    Tao C; Zhang Y; Jiang JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016209. PubMed ID: 17677545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.