These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38491569)

  • 1. Experimental and numerical investigation of three-dimensional shock train topology with differently oriented background waves.
    Wang D; Wang Z; Chang J; Yue L; Wang G; Chen H
    Phys Rev E; 2024 Feb; 109(2-2):025103. PubMed ID: 38491569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method.
    Shirsat AU; Nayak SG; Patil DV
    Phys Rev E; 2022 Aug; 106(2-2):025314. PubMed ID: 36109898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Throttling process of a supersonic cascade studied by high-frequency response pressure and high-speed schlieren.
    Wang Z; Chang J; Hou W; Yu D
    Sci Rep; 2021 Jun; 11(1):13550. PubMed ID: 34193916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity scaling of a shock wave reflected off a circular cylinder.
    Glazer E; Sadot O; Hadjadj A; Chaudhuri A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066317. PubMed ID: 21797487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic effects in transition from regular to Mach reflection in steady supersonic flows.
    Goyal R; Sameen A; Jayachandran T; Rajesh G
    Phys Rev E; 2021 Nov; 104(5-2):055101. PubMed ID: 34942819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study of Air Flow Induced by Shock Impact on an Array of Perforated Plates.
    Zhang L; Feng Z; Sun M; Jin H; Shi H
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow visualisation of a normal shock impinging over a rounded contour bump in a Mach 1.3 free-stream.
    Lo KH; Kontis K
    J Vis (Tokyo); 2017; 20(2):237-249. PubMed ID: 28515658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals.
    He L; Sewell TD; Thompson DL
    J Chem Phys; 2011 Mar; 134(12):124506. PubMed ID: 21456675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.
    Hiejima T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053017. PubMed ID: 25353890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory and simulation of shock waves: Entropy production and energy conversion.
    Hafskjold B; Bedeaux D; Kjelstrup S; Wilhelmsen Ø
    Phys Rev E; 2021 Jul; 104(1-1):014131. PubMed ID: 34412362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory.
    Taniguchi S; Arima T; Ruggeri T; Sugiyama M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013025. PubMed ID: 24580338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersive nature of high mach number collisionless plasma shocks: Poynting flux of oblique whistler waves.
    Sundkvist D; Krasnoselskikh V; Bale SD; Schwartz SJ; Soucek J; Mozer F
    Phys Rev Lett; 2012 Jan; 108(2):025002. PubMed ID: 22324692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear reflection of shock shear waves in soft elastic media.
    Pinton G; Coulouvrat F; Gennisson JL; Tanter M
    J Acoust Soc Am; 2010 Feb; 127(2):683-91. PubMed ID: 20136190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the structure of low-Mach number, low-beta, quasi-perpendicular shocks.
    Wilson LB; Koval A; Szabo A; Stevens ML; Kasper JC; Cattell CA; Krasnoselskikh VV
    J Geophys Res Space Phys; 2017 Sep; 122(9):9115-9133. PubMed ID: 30410850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulence generation by shock interaction with a highly nonuniform medium.
    Davidovits S; Federrath C; Teyssier R; Raman KS; Collins DC; Nagel SR
    Phys Rev E; 2022 Jun; 105(6-2):065206. PubMed ID: 35854499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic field studies of the solar wind interaction with venus from the galileo flyby.
    Kivelson MG; Kennel CF; McPherron RL; Russell CT; Southwood DJ; Walker RJ; Hammond CM; Khurana KK; Strangeway RJ; Coleman PJ
    Science; 1991 Sep; 253(5027):1518-22. PubMed ID: 17784092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical observation of secondary Mach stem in weak acoustic shock reflection.
    Tripathi BB; Baskar S; Coulouvrat F; Marchiano R
    J Acoust Soc Am; 2018 Aug; 144(2):EL125. PubMed ID: 30180711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waves in interplanetary shocks: a wind/WAVES study.
    Wilson LB; Cattell C; Kellogg PJ; Goetz K; Kersten K; Hanson L; MacGregor R; Kasper JC
    Phys Rev Lett; 2007 Jul; 99(4):041101. PubMed ID: 17678345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of primary and secondary features in high-mach-number shock-bubble interaction.
    Ranjan D; Niederhaus J; Motl B; Anderson M; Oakley J; Bonazza R
    Phys Rev Lett; 2007 Jan; 98(2):024502. PubMed ID: 17358611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.