These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38491589)
1. Triad resonance for internal waves in a uniformly stratified fluid: Rogue waves and breathers. Yin HM; Pan Q; Chow KW Phys Rev E; 2024 Feb; 109(2-1):024204. PubMed ID: 38491589 [TBL] [Abstract][Full Text] [Related]
2. Transient modes for the coupled modified Korteweg-de Vries equations with negative cubic nonlinearity: Stability and applications of breathers. Wong CN; Yin HM; Chow KW Chaos; 2024 Aug; 34(8):. PubMed ID: 39177957 [TBL] [Abstract][Full Text] [Related]
3. Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation. Liu W; Zhang J; Li X PLoS One; 2018; 13(2):e0192281. PubMed ID: 29432495 [TBL] [Abstract][Full Text] [Related]
4. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework. Slunyaev AV; Pelinovsky EN Phys Rev Lett; 2016 Nov; 117(21):214501. PubMed ID: 27911520 [TBL] [Abstract][Full Text] [Related]
5. Higher-order matrix nonlinear Schrödinger equation with the negative coherent coupling: binary Darboux transformation, vector solitons, breathers and rogue waves. Du Z; Nie Y; Guo Q Opt Express; 2023 Dec; 31(25):42507-42523. PubMed ID: 38087623 [TBL] [Abstract][Full Text] [Related]
6. On the role of four-wave mixing effect in the interactions between nonlinear modes of coupled generalized nonlinear Schrödinger equation. Vishnu Priya N; Senthilvelan M; Rangarajan G Chaos; 2019 Dec; 29(12):123135. PubMed ID: 31893664 [TBL] [Abstract][Full Text] [Related]
7. Bright and dark rogue internal waves: The Gardner equation approach. Bokaeeyan M; Ankiewicz A; Akhmediev N Phys Rev E; 2019 Jun; 99(6-1):062224. PubMed ID: 31330713 [TBL] [Abstract][Full Text] [Related]
8. Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation. Chen J; Pelinovsky DE Phys Rev E; 2021 Jun; 103(6-1):062206. PubMed ID: 34271656 [TBL] [Abstract][Full Text] [Related]
9. Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Su JJ; Gao YT; Deng GF; Jia TT Phys Rev E; 2019 Oct; 100(4-1):042210. PubMed ID: 31770880 [TBL] [Abstract][Full Text] [Related]
10. Formation of rogue waves from a locally perturbed condensate. Gelash AA Phys Rev E; 2018 Feb; 97(2-1):022208. PubMed ID: 29548089 [TBL] [Abstract][Full Text] [Related]
11. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane. Liu TY; Chiu TL; Clarkson PA; Chow KW Chaos; 2017 Sep; 27(9):091103. PubMed ID: 28964137 [TBL] [Abstract][Full Text] [Related]
12. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation. He J; Wang L; Li L; Porsezian K; Erdélyi R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861 [TBL] [Abstract][Full Text] [Related]
13. Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient. Zhong WP; Belić M; Zhang Y Opt Express; 2015 Feb; 23(3):3708-16. PubMed ID: 25836223 [TBL] [Abstract][Full Text] [Related]
14. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Wang L; Zhu YJ; Qi FH; Li M; Guo R Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105 [TBL] [Abstract][Full Text] [Related]